RESUMO
PURPOSES: To enhance the functional capability of MRI, this study aims to develop a novel MR elastography (MRE) sequence that achieves rapid acquisition without distortion artifacts. METHODS: A displacement-encoded stimulated echo (DENSE) with multiphase acquisition scheme was used to capture wave images. A center-out golden-angle stack-of-stars sampling pattern was introduced for improved SNR and data incoherence. A combination of Hadamard encoding and interleaved multislab acquisition schemes was used to increase the acquisition efficiency of MRE data with multiple directions and phase offsets. A generalized parallel-imaging and compressed-sensing method was further applied to accelerate the acquisition process. The imaging results of the proposed sequence were compared with those from six gradient echo (GRE)/EPI/DENSE-based MRE sequences via phantom and brain acquisitions. RESULTS: The proposed sequence achieved a 6-fold acceleration compared with GRE MRE. With the application of a conventional parallel-imaging and compressed-sensing algorithm, the scanning speed was further accelerated by 8-fold, matching the speed of EPI-based MRE. Phantom tests revealed small variances in stiffness measurements across the seven sequences (< 9.23%). The proposed sequence exhibited a higher contrast-to-noise ratio (1.38) than the two EPI-based sequences (0.61/0.76) and similar to GRE-based sequences (1.34/1.22/1.58). Brain imaging validated the effectiveness of the proposed sequence in accurate stiffness estimation and distortion artifact avoidance. CONCLUSION: A rapid DENSE-based MRE sequence with interleaved multislab acquisition and Hadamard encoding was developed at a speed matching EPI-based sequences, without compromising SNR or introducing distortion artifacts.
Assuntos
Fungos , Micoses , Fungos/patogenicidade , Micoses/microbiologia , Humanos , Interações Hospedeiro-PatógenoRESUMO
Introduction: Autologous platelet-rich plasma (PRP) therapy has emerged as a promising regenerative treatment modality, offering potential improvements in healing outcomes through its rich content of growth factors and cytokines. We evaluated the effectiveness of PRP therapy in the management of complex wounds, using a decade-long retrospective analysis of treatments conducted at a tertiary care center from 2010 to 2020. The study introduces and assesses the efficacy of the Sandeep's Technique for Assisted Regeneration of Skin (STARS) in enhancing wound healing and quality of life for patients with complex wounds. Materials and methods: A prospective interventional study was conducted, involving two phases: the development and initial testing of PRP therapy (2010-2015) and the application and evaluation of the STARS protocol (2015-2020). The study included patients with complex wounds, utilizing autologous PRP prepared through a double spin centrifuge technique. Outcome measures included wound-healing rates, infection management, and complication rates, compared to conventional treatment methods. Results: The study treated 500 wounds in 432 patients with autologous PRP, noting significant improvements in wound-healing rates, 97.7% had infection control without antibiotics (even in MRSA cases), and all had a good pain control. Histopathological examinations confirmed collagen-rich healing with minimal scarring. The STARS protocol demonstrated the potential of PRP therapy in accelerating wound healing, reducing the need for additional surgical interventions, and enhancing patient outcomes. Conclusion: PRP therapy, particularly when administered following the STARS protocol, represents a safe, effective, and patient-friendly approach for the management of complex wounds. This study supports the integration of PRP therapy into regenerative care strategies, suggesting a shift toward more innovative and efficacious treatments in wound management.
RESUMO
This research delves into the molecular and morphological characteristics of myzostomid worms associated with common shallow-water feather stars (Echinodermata: Crinoidea: Comatulidae) in the coastal waters near Sanya, Hainan Island. Through the examination of specimens collected at depths of up to 10 m using scuba diving techniques, we describe three new species (Myzostoma ordinatum sp. nov., M. scopus sp. nov., and M. solare sp. nov.) and report the first record of Myzostoma polycyclus Atkins, 1927 in the South China Sea. The absence of overlap with the seven previously documented Myzostomida species in the shallow waters of Hong Kong and Shenzhen reveals significant gaps in our understanding of marine biodiversity in the South China Sea. These findings, combined with an analysis of available molecular data, underscore the potential existence of unexplored and diverse symbiotic relationships among marine invertebrates within the region.
RESUMO
This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.
RESUMO
Sea stars are a group of marine invertebrates suitable for studying the hormonal regulation of reproduction and spawning. In spite of substantial progress in understanding how various substances such as 1-methyladenine act in their gonads, there are still many gaps concerning the fine details of their action. One such gap is how the gonadal wall contraction is induced. Recent literature data suggest that, upon 1-methyladenine stimulation, some cells within the gonadal lumen produce non-neuronal acetylcholine that, upon contact with the gonadal wall, induces contraction of myoepithelial cells. Our ultrastructural study of the gonads in the sea star Patiria pectinifera has shown, for the first time, that there are sites where the basal laminae bordering the hemal sinus directly contact one another and appear at this contact site as a single entity. These contact sites are often associated with hemidesmosome-like junctions that anchor male accessory cells or female follicle cells on one side of the site and myoepithelial cells on the opposite. We suggest that contraction-inducing substance is secreted from an accessory or follicle cell, passes through a basal lamina contact site, and on the opposite side of the contact site acts on a myoepithelial cell to induce its contraction.
RESUMO
PURPOSE: To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific T 1 $$ {\mathrm{T}}_1 $$ ( wT 1 $$ {\mathrm{wT}}_1 $$ ) and T 2 $$ {\mathrm{T}}_2 $$ ( wT 2 $$ {\mathrm{wT}}_2 $$ ) mapping for the characterization of diffuse and oncological liver diseases. METHODS: The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for B 1 $$ {B}_1 $$ insensitivity at 3 T, to correct for relaxation-induced blurring, and to map T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies. RESULTS: Simulations demonstrate good B 1 $$ {B}_1 $$ insensitivity of the proposed method in measuring T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ values. The proposed method produces co-registered wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ maps with a good agreement with reference methods (phantom: wT 1 = 1 . 02 wT 1,ref - 8 . 93 ms , R 2 = 0 . 991 $$ {\mathrm{wT}}_1=1.02\kern0.1em {\mathrm{wT}}_{1,\mathrm{ref}}-8.93\kern0.1em \mathrm{ms},{R}^2=0.991 $$ ; wT 2 = 1 . 03 wT 2,ref + 0 . 73 ms , R 2 = 0 . 995 $$ {\mathrm{wT}}_2=1.03\kern0.1em {\mathrm{wT}}_{2,\mathrm{ref}}+0.73\kern0.1em \mathrm{ms},{R}^2=0.995 $$ ). The proposed wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ mapping exhibits good repeatability and can be robustly performed in patients with pathologies. CONCLUSIONS: The proposed method allows whole-liver wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ quantification with high accuracy at isotropic resolution in a fixed acquisition time during free-breathing.
RESUMO
This paper presents new relativistic composite polytropic models for compact stars by simultaneously solving Einstein field equations with the polytropic state equation to simulate the spherically symmetric, static matter distribution. Using a non-uniform polytropic index, we get the Tolman-Oppenheimer-Volkoff equation for the relativistic composite polytrope (CTOV). To analyze the star's structure, we numerically solve the CTOV equation and compute the Emden and mass functions for various relativistic parameters and polytropic indices appropriate for neutron stars. The calculation results show that, as the relativistic parameter approaches zero, we recover the well-known Lane-Emden equation from the Newtonian theory of polytropic stars; thus, testing the computational code by comparing composite Newtonian models to those in the literature yields good agreement. We compute composite relativistic models for the neutron star candidates Cen X-3, SAXJ1808.4-3658, and PSR J1614-22304. We compare the findings with various existing models in the literature. Based on the accepted models for PSR J1614-22304 and Cen X-3, the star's core radius is predicted to be between 50 and 60% percent of its total radius, while we found that the radius of the core of star SAXJ1808.4-3658 is around 30% of the total radius. Our findings show that the neutron star structure may be approximated by a composite relativistic polytrope, resulting in masses and radii that are quite consistent with observation.
RESUMO
A new MRI technique is presented for three-dimensional fast simultaneous whole brain mapping of myelin water fraction (MWF), T1, proton density (PD), R2*, magnetic susceptibility (QSM), and B1 transmit field (B1+). Phantom and human (N = 9) datasets were acquired using a dual-flip-angle blipped multi-gradient-echo (DFA-mGRE) sequence with a stack-of-stars (SOS) trajectory. Images were reconstructed using a subspace-based algorithm with a locally low-rank constraint. A novel joint-sparsity-constrained multicomponent T2*-T1 spectrum estimation (JMSE) algorithm is proposed to correct for the T1 saturation effect and B1+/B1- inhomogeneities in the quantification of MWF. A tissue-prior-based B1+ estimation algorithm was adapted for B1 correction in the mapping of T1 and PD. In the phantom study, measurements obtained at an acceleration factor (R) of 12 using prospectively under-sampled SOS showed good consistency (R2 > 0.997) with Cartesian reference for R2*/T1app/M0app. In the in vivo study, results of retrospectively under-sampled SOS with R = 6, 12, 18, showed good quality (structure similarity index measure > 0.95) compared with those of fully-sampled SOS. Besides, results of prospectively under-sampled SOS with R = 12 showed good consistency (intraclass correlation coefficient > 0.91) with Cartesian reference for T1/PD/B1+/MWF/QSM/R2*, and good reproducibility (coefficient of variation < 7.0 %) in the test-retest analysis for T1/PD/B1+/MWF/R2*. This study has demonstrated the feasibility of simultaneous whole brain multiparametric mapping with a two-minute scan using the DFA-mGRE SOS sequence, which may overcome a major obstacle for neurological applications of multiparametric MRI.
Assuntos
Encéfalo , Imagens de Fantasmas , Humanos , Masculino , Adulto , Encéfalo/diagnóstico por imagem , Algoritmos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodosRESUMO
Elucidating the role of strange baryons (hyperons) in neutron stars requires detailed knowledge of hyperon-nucleon interactions in the light (u,d,s) quark sector. The structure of the hyperons and their excitation spectra also directly impact, and are an input to, models of big-bang nucleosynthesis. The upcoming K-long Facility will provide a much-needed intense and clean neutral strange meson beam, from which hyperons can be produced at rates where hyperon structure, hyperon-nucleon interactions and higher-order interactions can be studied with a new level of accuracy and for hitherto unreachable measurements. The new facility has the potential to address long-standing questions surrounding the strange sector of the strong force and its relevance to the structure of atomic nuclei, neutron stars and the cosmos at large. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.
RESUMO
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
RESUMO
White dwarfs are the dense, burnt-out remnants of the vast majority of stars, condemned to cool over billions of years as they steadily radiate away their residual thermal energy. To first order, their atmosphere is expected to be made purely of hydrogen due to the efficient gravitational settling of heavier elements. However, observations reveal a much more complex situation, as the surface of a white dwarf (1) can be dominated by helium rather than hydrogen, (2) can be polluted by trace chemical species, and (3) can undergo significant composition changes with time. This indicates that various mechanisms of element transport effectively compete against gravitational settling in the stellar envelope. This phenomenon is known as the spectral evolution of white dwarfs and has important implications for Galactic, stellar, and planetary astrophysics. This invited review provides a comprehensive picture of our current understanding of white dwarf spectral evolution. We first describe the latest observational constraints on the variations in atmospheric composition along the cooling sequence, covering both the dominant and trace constituents. We then summarise the predictions of state-of-the-art models of element transport in white dwarfs and assess their ability to explain the observed spectral evolution. Finally, we highlight remaining open questions and suggest avenues for future work.
RESUMO
Meteorology is not one of the most discussed topics in Paracelsus studies, although it is closely linked to both Paracelsus' medicine and cosmology. Furthermore, it appears to be at the very core of Paracelsus' famous matter theory of three chymical principles, mercury, sulphur and salt, known as the tria prima. By discussing prominent examples of Paracelsus' explanations on how the tria prima operate within the stars, this article shows how the Swiss physician conceived meteorology within his own body of knowledge, obviously constructed in opposition to the Aristotelian-scholastic tradition, how he based it on a peculiar interpretation of the Biblical creation story, and made it the proper laboratory of his chymical matter theory, applying it first systematically to the field of natural philosophy, especially to celestial phenomena, even before using it for his medical theory in his later writings.
RESUMO
Emerging evidence suggests that point-of-decision messages may be an effective way to promote healthy food choices. Previous studies show improvements in overall nutritional quality, as well as increases in underconsumed food categories, such as fruits and vegetables, and underconsumed nutrients of public health concern, like dietary fiber. However, there have been multiple approaches used for delivering point-of-decision messages, including very brief messages that remind individuals to consider health during choice, as well as longer messages providing educational information about health benefits. While both approaches have demonstrated positive impacts on outcomes, there is no comparative evidence of the messages' effectiveness. In this study, we examine the impact of four messages on two nutritional attributes of cereals selected in a two-round pre- and post-message breakfast cereal choice exercise with numerous (n = 33) breakfast cereals available. Data were collected via an online survey of adult US residents recruited from the Prolific consumer panel. Three of the messages were simple reminder messages (taste, health, fiber), while there was additionally a longer fiber-focused messaging detailing the health benefits of fiber. Findings show that the simple messages outperformed the longer educational message, though there were some trade-offs between general health and fiber messages. The simple dietary fiber-focused message resulted in significantly higher dietary fiber content in cereals chosen than in any other messaging condition, while the general health message did not result in significantly higher measures of nutritional quality than the simple fiber message. The results of the study suggest that simpler messages may be more effective at increasing the nutritional quality of food choices. Additionally, messages focused on specific nutrients lead to significantly greater increases in the content of those nutrients.
Assuntos
Fibras na Dieta , Preferências Alimentares , Adulto , Humanos , Escolaridade , Valor Nutritivo , Grão ComestívelRESUMO
The current understanding of the mechanism of core-collapse supernovae (CCSNe), one of the most energetic events in the universe associated with the death of massive stars and the main formation channel of compact objects such as neutron stars and black holes, is reviewed for broad readers from different disciplines of science who may not be familiar with the object. Therefore, we emphasize the physical aspects than the results of individual model simulations, although large-scale high-fidelity simulations have played the most important roles in the progress we have witnessed in the past few decades. It is now believed that neutrinos are the most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics and in numerics will be explained one by one. We will also try to elucidate the remaining issues.
Assuntos
Nêutrons , Astros CelestesRESUMO
The hydrogen 21-cm signal is predicted to be the richest probe of the young Universe, including those eras known as the cosmic Dark Ages, the Cosmic Dawn (when the first star and black hole formed) and the Epoch of Reionization. This signal holds the key to deciphering processes that take place at the early stages of cosmic history. In this opinion piece, we discuss the potential scientific merit of lunar observations of the 21-cm signal and their advantages over more affordable terrestrial efforts. The Moon is a prime location for radio cosmology which will enable precision observations of the low-frequency radio sky. The uniqueness of such observations is that they will provide an unparalleled opportunity to test cosmology and the nature of dark matter using the Dark Ages 21-cm signal. No less enticing is the opportunity to obtain a much clearer picture of the Cosmic Dawn than that currently achievable from the ground, which will allow us to determine the properties of the first stars and black holes. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.
RESUMO
Perylene diimide (PDI) is a readily reducible electron-deficient dye that exhibits strong photoluminescent properties, providing new opportunities for synthesizing novel electrochemiluminescence (ECL) emitters. In this study, ethylene glycol (EG) was used to induce the self-assembly of PDI supramolecules for the preparation of ultrathin EG-PDI nanosheets characterized by low crystallinity and weak stacking interaction. Notably, EG-PDI integrates luminescent and catalytic functions into one device, accelerating the interfacial electron transfer and the faster charge transfer kinetics of EG-PDI with K2S2O8. Furthermore, the narrow band gap of EG-PDI facilitates its excitation at an ultra-low potential (-0.3 V). To improve the efficiency of tumor marker analysis, multifunctional Au nanostars (ANS) was introduced both as an energy acceptor of the ECL system and a probe for the photothermal system. Dual-mode immunoassay have demonstrated superior analytical performance in detecting alpha-fetoprotein (AFP), meeting the requirements of modern clinical diagnostics in resource-limited environments.
Assuntos
Técnicas Biossensoriais , Imidas , Perileno/análogos & derivados , Imunoensaio , EtilenoglicóisRESUMO
Variations in chemical abundances with evolutionary phase have been identified among stars in globular and open clusters with a wide range of metallicities. In the metal-poor clusters, these variations compare well with predictions from stellar structure and evolution models considering the internal diffusive motions of atoms and ions, collectively known as atomic diffusion, when moderated by an additional mixing process with a fine-tuned efficiency. We present here an investigation of these effects in the Galactic globular cluster NGC 6121 (M4) ([Fe/H] = -1.13) through a detailed chemical abundance analysis of 86 stars using high-resolution ESO Very Large Telescope (VLT) Fibre Large Array Multi Element Spectrograph (FLAMES) spectroscopy. The stars range from the main-sequence turnoff point (TOP) to the red giant branch (RGB) just above the bump. We identify C-N-O and Mg-Al-Si abundance anticorrelations, and confirm the presence of a bimodal population differing by 1 dex in nitrogen abundance. The composition of the second-generation stars imply pollution from both massive (20-40 [Formula: see text]) and asymptotic giant branch stars. We find evolutionary variations in chemical abundances between the TOP and RGB, which are robust to uncertainties in stellar parameters and modelling assumptions. The variations are weak, but match predictions well when employing efficient additional mixing. Without correcting for Galactic production of lithium, we derive an initial lithium abundance 2.63 ± 0.10, which is marginally lower than the predicted primordial big-bang nucleosynthesis value.
RESUMO
One of the surprising results from the Hubble Space Telescope was the discovery that many of the most massive galaxies at redshift z ≈ 2 are very compact, having a half-light radius of only 1-2 kpc. The interpretation is that massive galaxies formed inside out, with their cores largely in place by z ≈ 2 and approximately half of their present-day mass added later through minor mergers. Here we present a compact, massive, quiescent galaxy at a photometric redshift of zphot=1.94-0.17+0.13 with a complete Einstein ring. The ring was found in the James Webb Space Telescope COSMOS-Web survey and is produced by a background galaxy at zphot=2.98-0.47+0.42. Its 1.54â³ diameter provides a direct measurement of the mass of the 'pristine' core of a massive galaxy, observed before the mixing and dilution of its stellar population during the 10 Gyr of galaxy evolution between z = 2 and z = 0. We find a mass for the lens Mlens=6.5-1.5+3.7×1011 Mâ within a radius of 6.6 kpc. The stellar mass within the same radius is Mstars=1.1-0.3+0.2×1011 Mâ for a Chabrier initial mass function and the fiducial dark matter mass is Mdm=2.6-0.7+1.6×1011 Mâ. Additional mass appears to be needed to explain the lensing results, either in the form of a higher-than-expected dark matter density or a bottom-heavy initial mass function.