Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
1.
Immunol Invest ; : 1-16, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356134

RESUMO

BACKGROUND: The survival rate of pig lung xenotransplantation (PLXTx) recipients is severely limited by intense xenogenic immune responses, necessitating further insights into xenogeneic immunity and the development of models to study the PLXTx immune response. METHODS: We identified regulators of PLXTx immune response Using Gene ontology analysis. We assessed the metabolic changes and protein levels in 3D4/31 pig alveolar macrophages (PAMs) through flow cytometry and immunoblotting. To induce a xenogenic immune response, we co-cultured 3D4/31-PAMs with A549 human alveolar epithelial cells and evaluated cytokine expression using qRT-PCR. RESULTS: Gene ontology analysis identified STAT1 and alveolar macrophages as contributors to lung autoimmunity and transplant rejection. In 3D4/31-PAMs, phorbol myristate acetate-induced glycogen accumulation and cyclooxygenase-2 expression were inhibited by the P2Y14 inhibitor PPTN. Co-culturing 3D4/31-PAMs with A549 human alveolar epithelial cells via 3D bioprinting resulted in a more pronounced inflammatory response than 2D co-culture, with increased expression of genes related to the P2Y14 cascade and inflammation. This inflammatory gene expression was prevented by PPTN treatment. CONCLUSION: Based on these results, we propose alginate bioprinting as an in vitro model for PLXTx and suggest that P2Y14 is a key regulator of xenogeneic immune responses in PAMs.

2.
Exp Dermatol ; 33(10): e15184, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39373252

RESUMO

Pemphigus vulgaris (PV) stands as a rare autoimmune bullous disease, while the precise underlying mechanism remains incompletely elucidated. High-throughput proteomic methodologies, such as LC-MS/MS, have facilitated the quantification and characterisation of proteomes from clinical skin samples, enhancing our comprehension of PV pathogenesis. The objective of this study is to elucidate the signalling mechanisms underlying PV through proteomic analysis. Proteins and cell suspension were extracted from skin biopsies obtained from both PV patients and healthy volunteers and subsequently analysed using LC-MS/MS and scRNA-seq. Cultured keratinocytes were treated with PV serum, followed by an assessment of protein expression levels using immunofluorescence and western blotting. A total of 880, 605, and 586 differentially expressed proteins (DEPs) were identified between the lesion vs. control, non-lesion vs. control, and lesion vs. non-lesion groups, respectively. The oxidative phosphorylation (OXPHOS) pathway showed activation in PV. Keratinocytes are the major cell population in the epidermis and highly expressed ATP5PF, ATP6V1G1, COX6B1, COX6A1, and NDUFA9. In the cellular model, there was a notable increase in the expression levels of OXPHOS-related proteins (V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8), along with STAT1, p-STAT1, and p-JAK1. Furthermore, both the OXPHOS inhibitor metformin and the JAK1 inhibitor tofacitinib demonstrated therapeutic effects on PV serum-induced cell separation, attenuating cell detachment. Metformin notably reduced the expression of V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8, p-STAT1, p-JAK1, whereas tofacitinib decreased the expression of p-STAT1 and p-JAK1, with minimal impact on the expression of V-ATP5A, III-UQCRC2, II-SDHB, and I-NDUFB8. Our results indicate a potential involvement of the OXPHOS and JAK-STAT1 pathways in the pathogenesis of PV.


Assuntos
Queratinócitos , Fosforilação Oxidativa , Pênfigo , Piperidinas , Proteômica , Transdução de Sinais , Humanos , Pênfigo/metabolismo , Queratinócitos/metabolismo , Piperidinas/farmacologia , Janus Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição STAT/metabolismo , Células Cultivadas , Feminino , Espectrometria de Massas em Tandem , Masculino
3.
Poult Sci ; 103(12): 104238, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39383668

RESUMO

Duck plague virus (DPV) is the only herpes virus known to be transmissible among aquatic animals, leading to immunosuppression in ducks, geese and swans. Long noncoding RNAs (LncRNA) are known to participate in viral infections, acting as either immune defenders or viral targets to evade the host response, but their precise roles in waterfowl virus infections are yet to be fully understood. This study aimed to investigate the role of LncRNA in DPV-induced innate immune responses. Results showed that DPV infection greatly upregulated Lnc BTU expression in duck embryo fibroblasts (DEF) and Lnc BTU promoted DPV replication. Mechanically, 4 DPV proteins, namely UL46, UL42, VP22 and US10, interacted with Lnc BTU, leading to its upregulation. Specifically, Lnc BTU facilitated the production of DNA polymerase by enhancing UL42 expression, thereby promoting DPV replication. Additionally, Lnc BTU suppressed STAT1 expression by targeting the DNA binding domain (DBD) and promoting STAT1 degradation through the proteasome pathway. Furthermore, Lnc BTU inhibited the production of key antiviral factors such as IFN-α, IFN-ß, MX and OASL during DPV infection. Treatment with 2 JAK-STAT pathway activators in DEFs resulted in the inhibition of Lnc BTU expression and DPV replication. Interestingly, DPV infection led to a decrease in STAT1 levels, which was reversed by Si-Lnc BTU. These findings suggest that DPV relies on Lnc BTU to inhibit the activation of the JAK-STAT pathway and limit the production of type 1 interferons (IFN) to complete immune evasion. Our study highlights the novel role of DPV proteins UL46, UL42, VP22, US10 as RNA-binding proteins in modulating the innate antiviral immune response, and discover the role of a new host factor, Lnc BTU, in DPV immune evasion, Lnc BTU and STAT1 can be used as a potential therapeutic target for DPV infection and immune evasion.

4.
Int J Clin Exp Pathol ; 17(9): 298-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399655

RESUMO

BACKGROUND: Previous studies have reported that STAT1 (Signal Transducer and Activator of Transcription 1) is associated with multiple tumor progression. This study aimed to investigate the role and related mechanisms of STAT1 in bladder cancer. METHODS: STAT1 expression in bladder cancer tissues and human bladder cancer cell lines was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The bladder cancer cell line T24 was transfected with overexpressing lentivirus targeting STAT1. Cell proliferation, invasion, and apoptosis were measured by Cell Counting Kit-8, Transwell assays, and flow cytometric analysis. Furthermore, RNA-Seq was performed to identify the downstream signaling pathways. Finally, the signaling pathway-related molecules were determined by RT-qPCR and western blot assays. RESULTS: The overexpression of STAT1 inhibited bladder cancer cell proliferation and invasion while enhancing apoptosis. Moreover, the overexpression of STAT1 in bladder cancer cells delayed tumor tumorigenesis in vitro. Mechanistically, RNA-Seq analysis revealed that the JAK-STAT signaling pathway was up-regulated, especially SOCS1 (suppressor of cytokine signaling 1) and SOCS3 (suppressor of cytokine signaling 3) in STAT1-sufficient cells. CONCLUSIONS: These results indicate the potential of STAT1 as a therapeutic target in bladder cancer.

5.
CNS Neurosci Ther ; 30(10): e70061, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392762

RESUMO

BACKGROUND: Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear. METHODS: We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice. RESULTS: Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1ß, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1ß, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin. CONCLUSIONS: IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.


Assuntos
Inflamassomos , Interferon gama , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição STAT1 , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interferon gama/farmacologia , Fator de Transcrição STAT1/metabolismo , Camundongos , Inflamassomos/metabolismo , Células Cultivadas , Masculino , Lipopolissacarídeos/farmacologia
6.
Stem Cell Res Ther ; 15(1): 366, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407354

RESUMO

INTRODUCTION: Mesenchymal stromal cell (MSC)-based cell therapy is a promising approach for various inflammatory disorders based on their immunosuppressive capacity. Osteopontin (OPN) regulates several cellular functions including tissue repair, bone metabolism and immune reaction. However, the biological function of OPN in regulating the immunosuppressive capacity of MSCs remains elusive. OBJECTIVES: This study aims to highlight the underlying mechanism of the proinflammatory cytokines affect the therapeutic ability of MSCs through OPN. METHODS: MSCs in response to the proinflammatory cytokines were collected to determine the expression profile of OPN. In vitro T-cell proliferation assays and gene editing were performed to check the role and mechanisms of OPN in regulating the immunosuppressive capacity of MSCs. Inflammatory disease mouse models were established to evaluate the effect of OPN on improving MSC-based immunotherapy. RESULTS: We observed that OPN, including its two isoforms iOPN and sOPN, was downregulated in MSCs upon proinflammatory cytokine stimulation. Interestingly, iOPN, but not sOPN, greatly enhanced the immunosuppressive activity of MSCs on T-cell proliferation and thus alleviated the inflammatory pathologies of hepatitis and colitis. Mechanistically, iOPN interacted with STAT1 and mediated its deubiquitination, thereby inducing the master immunosuppressive mediator inducible nitric oxide synthase (iNOS) in MSCs. In addition, iOPN expression was directly downregulated by activated STAT1, which formed a negative feedback loop to restrain MSC immunosuppressive capacity. CONCLUSION: Our findings demonstrated that iOPN expression modulation in MSCs is a novel strategy to improve MSC-based immunotherapy.


Assuntos
Células-Tronco Mesenquimais , Osteopontina , Fator de Transcrição STAT1 , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Osteopontina/metabolismo , Osteopontina/genética , Animais , Camundongos , Fator de Transcrição STAT1/metabolismo , Proliferação de Células , Linfócitos T/metabolismo , Linfócitos T/imunologia , Humanos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Transplante de Células-Tronco Mesenquimais/métodos
7.
Cells ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39329714

RESUMO

Threonine phosphorylation promotes inflammatory functions of STAT1 while restricting its interferon (IFN) signaling in innate immune responses. However, it remains unclear whether the restriction of STAT1-mediated IFN signaling conferred by threonine phosphorylation is a ubiquitous mechanism or one that is context-dependent. To address this, we utilized pristane-induced lupus, a prototype IFN-driven systemic autoimmune disease model characterized by the production of high-titer autoantibodies against nucleic acid-associated antigens. Through genetic and biochemical assays, we demonstrate that Thr748 phosphorylation is dispensable for STAT1 functionality in pristane-induced lupus. Genetically engineered mice expressing the phospho-deficient threonine 748-to-alanine (T748A) mutant STAT1 exhibited similar survival rates, high titers of anti-dsDNA IgG, and nephritis compared to their wild-type littermates. In sharp contrast, STAT1 deficiency protected mice against pristane-induced lupus, as evidenced by increased survival, low titers of anti-dsDNA IgG, and less severe nephritis in the STAT1 knockout mice compared to their T748A littermates. Our study suggests a phosphorylation-dependent modularity that governs the spectrum of STAT1 functionality in inflammatory contexts: IFN phospho-tyrosine-dependent and inflammatory phospho-threonine-dependent, with Thr748 phosphorylation driving selective inflammatory activities, particularly those not driven by the canonical JAK pathway. From a broader perspective, our findings provide deeper insights into how distinct phosphorylation events shape the combinatorial logic of signaling cassettes, thereby regulating context-dependent responses.


Assuntos
Inflamação , Fator de Transcrição STAT1 , Treonina , Animais , Fosforilação , Fator de Transcrição STAT1/metabolismo , Treonina/metabolismo , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Transdução de Sinais , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Terpenos
8.
Am J Chin Med ; : 1-13, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39340528

RESUMO

This study explores the anti-inflammatory properties of lupeol, a notable phytosterol found in various medicinal plants, highlighting its potential as a candidate for new drug development. We examined the effects of lupeol on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), as well as its impact on inflammatory markers in the lung tissues of LPS-challenged mice. Lupeol treatment enhanced HO-1 production, inhibited nuclear factor (NF)-κB activity, and reduced levels of COX-2/prostaglandin E2 (PGE2) and iNOS/nitric oxide (NO). In addition, lupeol decreased the phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), enhancing its binding to the anti-oxidant response element (ARE) and subsequently reducing interleukin (IL)-1ß expression. In vivo, lupeol significantly lowered iNOS expression and tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid from LPS-treated mice. These findings suggest that lupeol exerts its anti-inflammatory effects by modulating key signaling pathways, positioning it as a promising candidate for the development of novel therapeutics targeting pathological inflammation.

9.
Mol Cancer ; 23(1): 207, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39334380

RESUMO

BACKGROUND: The clinical response rate to immune checkpoint blockade (ICB) therapy in melanoma remains low, despite its widespread use. Circular non-coding RNAs (circRNAs) are known to play a crucial role in cancer progression and may be a key factor limiting the effectiveness of ICB treatment. METHODS: The circRNAs that were downregulated after coadministration compared with single administration of PD-1 inhibitor administration were identified through RNA-seq and Ribo-seq, and thus the circPIAS1 (mmu_circ_0015773 in mouse, has_circ_0008378 in human) with high protein coding potential was revealed. Fluorescence in situ hybridization (FISH) assays were conducted to determine the localization of circPIAS1 in human and mouse melanoma cells, as well as its presence in tumor and adjacent tissues of patients. Validation through dual-luciferase reporter assay and LC-MS/MS confirmed the ability of circPIAS1 to encode a novel 108 amino acid polypeptide (circPIAS1-108aa). Specific antisense oligonucleotides (ASOs) targeting the junction site of circPIAS1 were developed to reduce its intracellular levels. Proliferation changes in melanoma cells were assessed using CCK8, EdU, and colony formation assays. The impact of circPIAS1-108aa on the ferroptosis process of melanoma cells was studied through GSH, MDA, and C11-BODIPY staining assays. Western Blot, Immunoprecipitation (IP), and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques were employed to investigate the impact of circPIAS1-108aa on the P-STAT1/SLC7A11/GPX4 signaling pathway, as well as its influence on the balance between STAT1 SUMOylation and phosphorylation. Additionally, a melanoma subcutaneous transplanted tumor mouse model was utilized to examine the combined effect of reducing circPIAS1 levels alongside PD-1 inhibitor. RESULTS: Compared with the group treated with PD-1 inhibitor alone, circPIAS1 was significantly down-regulated in the coadministration group and demonstrated higher protein coding potential. CircPIAS1, primarily localized in the nucleus, was notably upregulated in tumor tissues compared to adjacent tissues, where it plays a crucial role in promoting cancer cell proliferation. This circRNA can encode a unique polypeptide consisting of 108 amino acids, through which it exerts its cancer-promoting function and impedes the effectiveness of ICB therapy. Mechanistically, circPIAS1-108aa hinders STAT1 phosphorylation by recruiting SUMO E3 ligase Ranbp2 to enhance STAT1 SUMOylation, thereby reactivating the transduction of the SLC7A11/GPX4 signaling pathway and restricting the immunogenic ferroptosis induced by IFNγ. Furthermore, the combination of ASO-circPIAS1 with PD-1 inhibitor effectively inhibits melanoma growth and significantly enhances the efficacy of immune drugs in vivo. CONCLUSIONS: Our study uncovers a novel mechanism regarding immune evasion in melanoma driven by a unique 108aa peptide encoded by circPIAS1 in melanoma that dramatically hinders immunogenic ferroptosis triggered by ICB therapy via modulating the balance between SUMOylation and phosphorylation of STAT1. This work reveals circPIAS1-108aa as a critical factor limiting the immunotherapeutic effects in melanoma and propose a promising strategy for improving ICB treatment outcomes.


Assuntos
Ferroptose , Proteínas Inibidoras de STAT Ativados , RNA Circular , Fator de Transcrição STAT1 , Sumoilação , Ferroptose/genética , Humanos , Animais , Camundongos , RNA Circular/genética , Fosforilação , Fator de Transcrição STAT1/metabolismo , Linhagem Celular Tumoral , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Feminino
10.
Biochem Biophys Res Commun ; 733: 150702, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39298917

RESUMO

Myocarditis is an inflammatory lesion of the myocardium that is caused by a variety of factors. At present, treatment of symptoms remains the main clinical intervention, but it cannot reduce the myocarditis damage caused by inflammation. M1 macrophages are thought to contribute significantly to the occurrence and development of inflammation by secreting a large number of proinflammatory factors. Puerarin is an isoflavone derivative isolated from pueraria that can be used as a dietary supplement and exerts wide range of anti-inflammatory and antioxidant effects. However, the mechanism underlying its anti-inflammatory effects needs to be further studied. The objective of this study was to investigate whether puerarin inhibited M1 polarization by affecting the JAK-STAT signaling pathway in a mouse model of autoimmune myocarditis, thus inhibiting the occurrence of inflammation in experimental autoimmune myocarditis (EAM) model mice. The results showed that EAM model mice treated with puerarin showed milder clinical symptoms and inflammatory infiltration than EAM model mice. Puerarin suppressed the in vivo and in vitro JAK1/2-STAT1 signal transduction in macrophages, thus inhibiting M1 polarization, reducing the secretion of proinflammatory factors, and ultimately decreasing IFN-γ and TNF-α levels in vivo, which led to myocardial apoptosis. Thus, puerarin could alleviate myocardial damage caused by inflammation. The conclusion of this study was that puerarin reduced myocardial damage in EAM model mice by regulating the polarization of macrophages toward M1, and this inhibitory effect may be achieved by inhibiting JAK1/2-STAT1 signaling.


Assuntos
Modelos Animais de Doenças , Isoflavonas , Macrófagos , Miocardite , Fator de Transcrição STAT1 , Animais , Fator de Transcrição STAT1/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Miocardite/tratamento farmacológico , Miocardite/patologia , Miocardite/metabolismo , Miocardite/prevenção & controle , Camundongos , Masculino , Transdução de Sinais/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Camundongos Endogâmicos BALB C , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Doenças Autoimunes/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Anti-Inflamatórios/farmacologia
11.
Mol Ther Methods Clin Dev ; 32(3): 101316, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39282077

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.

12.
Cell Host Microbe ; 32(10): 1805-1821.e10, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39293437

RESUMO

Microbiota and feeding modes influence the susceptibility of premature newborns to necrotizing enterocolitis (NEC) through mechanisms that remain unknown. Here, we show that microbiota colonization facilitated by breastmilk feeding promotes NOD-like receptor family CARD domain containing 5 (Nlrc5) gene expression in mouse intestinal epithelial cells (IECs). Notably, inducible knockout of the Nlrc5 gene in IECs predisposes neonatal mice to NEC-like injury in the small intestine upon viral inflammation in an NK1.1+ cell-dependent manner. By contrast, formula feeding enhances neonatal gut colonization with environment-derived tilivalline-producing Klebsiella spp. Remarkably, tilivalline disrupts microbiota-activated STAT1 signaling that controls Nlrc5 gene expression in IECs through a PPAR-γ-mediated mechanism. Consequently, this dysregulation hinders the resistance of neonatal intestinal epithelium to self-NK1.1+ cell cytotoxicity upon virus infection/colonization, promoting NEC development. Together, we discover the underappreciated role of intestinal microbiota colonization in shaping a disease tolerance program to viral inflammation and elucidate the mechanisms impacting NEC development in neonates.


Assuntos
Animais Recém-Nascidos , Enterocolite Necrosante , Microbioma Gastrointestinal , Mucosa Intestinal , Fator de Transcrição STAT1 , Animais , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/virologia , Fator de Transcrição STAT1/metabolismo , Camundongos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos Knockout , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Humanos , Camundongos Endogâmicos C57BL
13.
J Clin Immunol ; 45(1): 17, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325235

RESUMO

BACKGROUND: Talaromyces marneffei (T. marneffei) is an opportunistic pathogen that causes endemic mycoses, which could lead to multiple organ damage. Talaromycosis is frequently disregarded as an early cautionary sign of immune system disorders in non-HIV-infected children. OBJECTIVE: We conduct a comprehensive review of the genotypes and clinical features of talaromycosis in patients with IEI to enhance clinical awareness regarding T. marneffei as a potential opportunistic pathogen in individuals with immune deficiencies. METHODS: A systematic literature review was performed by searching PubMed, Cochrane Central Register of Controlled Trials, Web of Science, EMBASE, and Scopus. Data on IEI patients with talaromycosis, including genotypes and their immunological and clinical features, were collected. RESULTS: Fifty patients with talaromycosis and IEI were included: XHIM (30.0%), STAT3-LOF deficiency (20.0%), STAT1-GOF (20.0%), IL2RG (6.00%), IFNGR1 (6.0%), IL12RB1 (4.0%), CARD9 (4.0%), COPA (4.0%), ADA (2.0%), RELB deficiency (2.0%), and NFKB2 (2.0%). Common symptoms of respiratory (43/50, 86.0%), skin (17/50, 34.0%), lymph node (31/50, 62.0%), digestive (34/50, 68.0%), and hematologic (22/50, 44.0%) systems were involved. The CT findings of the lungs may include lymph node calcification (9/30), interstitial lesions (8/30), pulmonary cavities (8/30), or specific pathogens (4/30), which could be easily misdiagnosed as tuberculosis infection. Amphotericin B (26/43), Voriconazole (24/43) and Itraconazole (22/43) were used for induction therapy. Ten patients were treated with Itraconazole sequentially and prophylaxis. 68.0% (34/50) of patients were still alive, and 4.0% (2/50) of were lost to follow-up. The disseminated T. marneffei infection resulted in the deaths of 14 individuals. CONCLUSIONS: The XHIM, STAT1-GOF, and STAT3-LOF demonstrated the highest susceptibility to talaromycosis, indicating the potential involvement of cellular immunity, IL-17 signaling, and the IL-12/IFN-γ axis in T. marneffei defense. T. marneffei infection may serve as an early warning indicator of IEI. For IEI patients suspected of T. marneffei, metagenomic next-generation sequencing (mNGS) could rapidly and effectively identify the causative pathogen. Prompt initiation of antifungal therapy is crucial for optimizing patient outcomes.


Assuntos
Micoses , Talaromyces , Humanos , Micoses/diagnóstico , Micoses/imunologia , Doenças Endêmicas , Antifúngicos/uso terapêutico , Genótipo , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/diagnóstico , Infecções Oportunistas/imunologia , Infecções Oportunistas/diagnóstico
14.
Cell Oncol (Dordr) ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283477

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly aggressive type of lung cancer with poor responses to traditional therapies such as surgery, radiotherapy, and chemotherapy. While immunotherapy has become an effective approach for treating multiple types of cancer, solid tumors frequently exhibit immune escape through various mechanisms, including downregulation of MHC I expression. However, whether the upregulation of MHC I expression can improve the immunotherapeutic effect on NSCLC remains unexplored. Suberoylanilide hydroxamic acid (SAHA) is a potent histone deacetylase (HDAC) inhibitor that has been applied clinically to treat lymphoma, but a high dose of SAHA kills tumor cells and normal cells without preference. Here, we report that low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by upregulating MHC I expression in NSCLC cells. METHODS: Flow cytometric analysis, quantitative real-time PCR and western blot were used to analyze the expression of MHC I, STAT1 and Smad2/3 in both human and mouse NSCLC cell lines after SAHA treatment. The nuclear translocation of phosphorylated STAT1 and Smad2/3 was investigated by western blot and immunofluorescence staining. The mechanisms underlying STAT1 and Smad2/3 upregulation were analyzed through database searches and chromatin immunoprecipitation-qPCR. Finally, we assessed the antitumor effect of specific CD8+ T cells with SAHA treatment in vivo and in vitro. RESULTS: We showed that low-dose SAHA upregulated the expression of MHC I in NSCLC cell lines without affecting cell viability. We also provided evidence that high levels of MHC I induced by SAHA promoted the activation, proliferation, and cytotoxicity of specific CD8+ T cells in mouse models. Mechanistically, low-dose SAHA increased the levels of H3K9ac and H3K27ac in the promoters of the STAT1, Smad2 and Smad3 genes in NSCLC cells by inhibiting HDAC activity, resulting in elevated expression levels of STAT1, Smad2 and Smad3. The nuclear translocation of phosphorylated STAT1 and Smad2/3 markedly upregulated the expression of MHC I in NSCLC cells. CONCLUSIONS: Low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by boosting MHC I expression in NSCLC cells. Thus, we revealed a key mechanism of SAHA-mediated enhanced antitumor immunity, providing insights into a novel immunotherapy strategy for NSCLC.

15.
Cell Biochem Biophys ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237779

RESUMO

Cancer-associated fibroblasts (CAFs) represent one of the major components of the tumor stroma, which might create an immunosuppressive tumor microenvironment by inducing and functionally polarizing protumoral macrophages. Previous studies indicated that exosomes derived from CAFs might transmit regulating signals and boost esophageal squamous cell carcinoma (ESCC) development. This study is designed to explore the role and mechanism of CAFs-derived exosomal microRNA-889-3p (miR-889-3p) in ESCC progression. Macrophage polarization was detected using flow cytometry. miR-889-3p, Tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, cycle progression, migration, and invasion were assessed using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), scratch assay, and Transwell assays. α-SMA, FAP, CD63, CD81, and signal transducer and activator of transcription 1 (STAT1) protein levels were detected using western blot. Exosomes were characterized using an electron microscope and nanoparticle tracking analysis (NTA). Binding between miR-889-3p and STAT1 was predicted by Starbase, and verified by a dual-luciferase reporter and RNA pull-down. The effect of CAFs-derived exosomal miR-889-3p on ESCC tumor growth in vivo was detected using mice xenograft assay. miR-889-3p level was decreased in LPS-induced M0 macrophages. CAF-derived exosomal miR-889-3p knockdown suppressed ESCC proliferation, migration, and invasion. CAFs might transfer miR-889-3p to M0 macrophages via exosomes. STAT1 was a target of miR-889-3p. Besides, in vivo studies confirmed that CAFs-derived exosomal miR-889-3p can accelerate ESCC tumor growth by regulating STAT1. CAFs-derived exosomal miR-889-3p facilitates esophageal squamous cell carcinoma cell proliferation, migration, and invasion by inhibiting M1 macrophage polarization through down-regulation of STAT1, providing a promising therapeutic target for ESCC.

16.
Biotechnol J ; 19(9): e2400415, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246130

RESUMO

In addressing the limitations of CRISPR-Cas9, including off-target effects and high licensing fees for commercial use, Cas-CLOVER, a dimeric gene editing tool activated by two guide RNAs, was recently developed. This study focused on implementing and evaluating Cas-CLOVER in HEK-293 cells used for recombinant adeno-associated virus (rAAV) production by targeting the signal transducer and activator of transcription 1 (STAT1) locus, which is crucial for cell growth regulation and might influence rAAV production yields. Cas-CLOVER demonstrated impressive efficiency in gene editing, achieving over 90% knockout (KO) success. Thirteen selected HEK-293 STAT1 KO sub-clones were subjected to extensive analytical characterization to assess their genomic stability, crucial for maintaining cell integrity and functionality. Additionally, rAAV9 productivity, Rep protein pattern profile, and potency, among others, were assessed. Clones showed significant variation in capsid and vector genome titers, with capsid titer reductions ranging from 15% to 98% and vector genome titers from 16% to 55%. Interestingly, the Cas-CLOVER-mediated STAT1 KO bulk cell population showed a better ratio of full to empty capsids. Our study also established a comprehensive analytical workflow to detect and evaluate the gene KOs generated by this innovative tool, providing a solid groundwork for future research in precise gene editing technologies.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Técnicas de Inativação de Genes , Fator de Transcrição STAT1 , Humanos , Dependovirus/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células HEK293 , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
17.
J Gastrointest Oncol ; 15(4): 1431-1445, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279978

RESUMO

Background: CKLF-like MARVEL transmembrane domain-containing 4 (CMTM4) is involved in immune regulation and tumor progression; however, its role in gastric cancer (GC) remains unclear. This study explored the role and mechanism of CMTM4 in GC. Methods: Immunohistochemistry was used to analyze CMTM4 expression in human gastric biopsied cells from patients with GC (N=23) or chronic superficial gastritis (N=23). To investigate the function of CMTM4 in GC cells, the gene CMTM4 was knocked down and overexpressed in human gastric adenocarcinoma cell line AGS. The gene CMTM4 was overexpressed in AGS cells and human gastric cell line SGC7901. Cell Counting Kit 8 (CCK-8) and cell clonogenic assays were used to analyze the proliferation of the GC cells. Flow cytometry was used to analyze the effects of CMTM4 on apoptosis and the cell cycle. Wound healing and transwell assays were used to analyze the migration and invasion of the gastric cells, respectively. The mechanism of CMTM4 in GC cells was explored using the tandem mass tags (TMTs) proteome and verified by western blot analysis. Results: CMTM4 expression was more downregulated in the human GC tissues than the gastritis tissues. CMTM4 overexpression significantly inhibited the proliferation, migration, and invasion of the GC cells, whereas CMTM4 knockdown enhanced gastric cell proliferation (P>0.05), migration (P>0.05), and invasion (P>0.05). Flow cytometry showed that CMTM4 promoted apoptosis and resulted in G1/S arrest in the GC cells. In addition, the proteome and western blot results showed that STAT1 was significantly upregulated, and the STAT1 signaling pathways were enriched in the GC cells overexpressing CMTM4. Conclusions: Our results suggest that CMTM4 plays a tumor-suppressive role in GC and may affect the growth, migration, and invasion of GC cells through the STAT1 signaling pathway. CMTM4 might have potential value as a prognosis marker and potential therapeutic target for GC therapy.

18.
Mol Med ; 30(1): 149, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267003

RESUMO

BACKGROUND: Obesity is a global epidemic, and the low-grade chronic inflammation of adipose tissue in obese individuals can lead to insulin resistance and type 2 diabetes. Adipose tissue macrophages (ATMs) are the main source of pro-inflammatory cytokines in adipose tissue, making them an important target for therapy. While branched-chain amino acids (BCAA) have been strongly linked to obesity and type 2 diabetes in humans, the relationship between BCAA catabolism and adipose tissue inflammation is unclear. This study aims to investigate whether disrupted BCAA catabolism influences the function of adipose tissue macrophages and the secretion of pro-inflammatory cytokines in adipose tissue, and to determine the underlying mechanism. This research will help us better understand the role of BCAA catabolism in adipose tissue inflammation, obesity, and type 2 diabetes. METHODS: In vivo, we examined whether the BCAA catabolism in ATMs was altered in high-fat diet-induced obesity mice, and if BCAA supplementation would influence obesity, glucose tolerance, insulin sensitivity, adipose tissue inflammation and ATMs polarization in mice. In vitro, we isolated ATMs from standard chow and high BCAA-fed group mice, using RNA-sequencing to investigate the potential molecular pathway regulated by BCAA accumulation. Finally, we performed targeted gene silence experiment and used immunoblotting assays to verify our findings. RESULTS: We found that BCAA catabolic enzymes in ATMs were influenced by high-fat diet induced obesity mice, which caused the accumulation of both BCAA and its downstream BCKA. BCAA supplementation will cause obesity and insulin resistance compared to standard chow (STC) group. And high BCAA diet will induce pro-inflammatory cytokines including Interlukin-1beta (IL-1ß), Tumor Necrosis Factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) secretion in adipose tissue as well as promoting ATMs M1 polarization (pro-inflammatory phenotype). Transcriptomic analysis revealed that a high BCAA diet would activate IFNGR1/JAK1/STAT1 pathway, and IFNGR1 specific silence can abolish the effect of BCAA supplementation-induced inflammation and ATMs M1 polarization. CONCLUSIONS: The obesity mice model reveals the catabolism of BCAA was disrupted which will cause the accumulation of BCAA, and high-level BCAA will promote ATMs M1 polarization and increase the pro-inflammatory cytokines in adipose tissue which will cause the insulin resistance in further. Therefore, reducing the circulating level of BCAA can be a therapeutic strategy in obesity and insulin resistance patients.


Assuntos
Aminoácidos de Cadeia Ramificada , Resistência à Insulina , Macrófagos , Obesidade , Fator de Transcrição STAT1 , Transdução de Sinais , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/administração & dosagem , Macrófagos/metabolismo , Camundongos , Masculino , Obesidade/metabolismo , Obesidade/etiologia , Fator de Transcrição STAT1/metabolismo , Janus Quinase 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Suplementos Nutricionais , Inflamação/metabolismo , Modelos Animais de Doenças
19.
J Autoimmun ; 149: 103307, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39276627

RESUMO

Pemphigus is a severe autoimmune blistering disease characterized by acantholysis triggered by autoantibodies against desmoglein 1 and 3 (DSG1/3). Apoptosis plays a pivotal role in facilitating acantholysis, yet the precise underlying mechanism remains obscure. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is known to promote apoptosis and disrupt cell junctions, although its involvement in pemphigus pathogenesis remains ambiguous. Our study observed decreased DSG1/3 expression alongside increased TWEAK/fibroblast growth factor-inducible 14 (Fn14) expression and keratinocyte apoptosis in both lesional and perilesional skin. In vitro experiments revealed that TWEAK-stimulated keratinocytes exhibited enhanced apoptosis, STAT1 phosphorylation, and reduced intercellular DSG1/3 expression. Notably, bulk-RNA sequencing unveiled that CASPASE-3 was responsible for mediating the DSG1/3 depletion, as confirmed by direct interaction with DSG1/3 in a co-immunoprecipitation assay. Naloxone, known for preserving cellular adhesion and preventing cell death, effectively reduced apoptosis and restored DSG1/3 levels in TWEAK-stimulated keratinocytes. The anti-apoptotic properties of naloxone were further validated in a murine pemphigus model. Our findings elucidate that TWEAK facilitates keratinocyte apoptosis by augmenting caspase-3 activity, leading to DSG1/3 depletion and apoptosis in pemphigus. Importantly, naloxone can counter TWEAK-induced apoptosis in pemphigus pathogenesis, offering a potential therapeutic intervention.

20.
Mol Med ; 30(1): 139, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242993

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion (I/R) injury is a common pathological process in clinical practice. Developing effective therapeutic strategies to reduce or prevent this injury is crucial. The article aimed to investigate the role and mechanism of mesencephalic astrocyte-derived neurotrophic factor (MANF) and its key subdomains in modulating myocardial I/R-induced cardiomyocyte apoptosis. METHODS: MANF stable knockout cell line and MANF mutant overexpression plasmids were constructed. The effects of MANF and mutants on apoptosis and endoplasmic reticulum (ER) stress related proteins were evaluated in hypoxia/reoxygenation-induced HL-1 cardiomyocytes by western blot, immunofluorescence, Tunel and flow cytometry. Echocardiography, ELISA, TTC and Masson were used to observe the effects of recombinant MANF protein (rMANF) on cardiac function in myocardial I/R mice. RESULTS: This study observed increased expression of MANF in both myocardial infarction patients and I/R mice. MANF overexpression in cardiomyocytes decreased ER stress-induced apoptosis, while MANF knockout exacerbated it. rMANF improved cardiac function in I/R mice by reducing injury and inflammation. This study specifically demonstrates that mutations in the α-helix of MANF were more effective in reducing ER stress and cardiomyocyte apoptosis. Mechanistically, MANF and the α-helix mutant attenuated I/R injury by inhibiting the JAK1/STAT1/NF-κB signaling pathway in addition to reducing ER stress-induced apoptosis. CONCLUSION: These findings highlight MANF and its subdomains as critical regulators of myocardial I/R injury, offering promising therapeutic targets with significant clinical implications for I/R-related diseases.


Assuntos
Apoptose , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fatores de Crescimento Neural , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Linhagem Celular , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA