Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Biomed Pharmacother ; 177: 117163, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018876

RESUMO

Graveoline exhibits various biological activities. However, only limited studies have focused on its hepatoprotective properties. This study evaluated the anti-inflammatory and hepatoprotective activities of graveoline, a minor 2-phenylquinolin-4-one alkaloid isolated from Ruta graveolens L., in a liver injury model in vitro and in vivo. A network pharmacology approach was used to investigate the potential signaling pathway associated with the hepatoprotective activity of graveoline. Subsequently, biological experiments were conducted to validate the findings. Topological analysis of the KEGG pathway enrichment revealed that graveoline mediates its hepatoprotective activity through genes associated with the hepatitis B viral infection pathway. Biological experiments demonstrated that graveoline effectively reduced the levels of alanine transaminase and aspartate transaminase in lipopolysaccharide (LPS)-induced HepG2 cells. Graveoline exerted antihepatitic activity by inhibiting the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and elevated the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in vitro and in vivo. Additionally, graveoline exerted its hepatoprotective activity by inhibiting JAK1 and STAT3 phosphorylation both in vitro and in vivo. In summary, graveoline can attenuate acute liver injury by inhibiting the TNF-α inflammasome, activating IL-4 and IL-10, and suppressing the JAK1/STAT3 signaling pathway. This study sheds light on the potential of graveoline as a promising therapeutic agent for treating liver injury.

2.
Sci Rep ; 14(1): 15564, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971897

RESUMO

Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.


Assuntos
Dissecção Aórtica , Modelos Animais de Doenças , Janus Quinase 2 , Piroptose , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Técnicas de Silenciamento de Genes , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Camundongos Endogâmicos C57BL , Piroptose/genética , Fator de Transcrição STAT3/metabolismo , Tirfostinas/farmacologia
3.
Int Arch Allergy Immunol ; : 1, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991517

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) combined with hashimoto thyroiditis (HT) is an important cause of various fatal comorbidities of RA. There is no precise conclusion about the cause of this disease. METHODS: Peripheral blood and synovial tissue were collected from healthy participants, patients with RA, and patients with both RA and HT. Immunofluorescence staining and Pearson correlation analysis were used to detect the levels of γδTCR and the correlation between IL-17 and p-STAT3, respectively. ELISA, chemiluminescence assays, qRT-PCR and Western blot were performed to detect the levels of IgG, IgM, IFN-γ, IL-1ß, TNF-α, Tg-Ab, Tpo-Ab, IL-17, IL-2, p-SATA3, and STAT3, respectively. RESULTS: There was increased proportion of γδT cells, IL-17, and p-STAT3 levels in RA and HT patients. IL-17 was positively correlated with p-STAT3. γδT cells significantly promoted the expression of IgG, Tg-Ab, Tpo-Ab, and IL-17. When γδT and human fibroblast-like synoviocytes (FLSs) were co-cultured, the levels of IL-2, IFN-γ, IL-1ß, TNF-α, and IL-17 were increased, and the IL-17/STAT3 signaling pathway was activated. When IL-17-silenced γδT cells and STAT3-silenced FLSs were co-cultured, the levels of IL-1ß and TNF-α in FLSs were significantly decreased. Furthermore, when STAT3-silenced FLSs were added to the co-culture medium of B cells and γδT cells, the levels of IL-1ß and TNF-α were also decreased significantly. CONCLUSION: γδT cells induced RA directly or by stimulating B cells to activate STAT3 through IL-17.

4.
Cell Biol Int ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001618

RESUMO

Transfer RNA-derived fragments (tRFs) represent a novel class of non-coding RNA transcripts that possess specific biological functions. However, the involvement of tRFs in retinal microvascular diseases remains poorly understood. In this study, we aimed to reveal whether modulation of tRF-30 expression could attenuate pathological retinal neovascular diseases. Our findings demonstrate a significant upregulation of tRF-30 expression levels in both in vivo models of diabetic retinopathy (DR) and in vitro endothelial sprouting models. Conversely, inhibition of tRF-30 expression suppressed the formation of abnormal neovascularization in the retina in vivo, while reducing the proliferation and migration activity of retinal vascular endothelial cells in vitro. We also found that tRF-30 modulates retinal neovascularization through the tRF-30/TRIB3/signal transducer and activated transcription 3 signaling pathway. Furthermore, we validated a significant upregulation of tRF-30 expression levels in the vitreous humor of DR patients, with high levels of both validity and specificity in diagnostic testing. Collectively, our findings highlight a pro-angiogenic role for tRF-30 in DR. Intervening in the tRF-30 signaling pathway may represent a promising prevention and treatment strategy for retinal angiogenesis.

5.
Int J Cancer ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989970

RESUMO

Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.

6.
J Ethnopharmacol ; 333: 118442, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38852640

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine that is composed of 12 crude drugs. It has been used in the treatment of diabetic neuropathic pain (DNP) for more than 30 years. AIM OF STUDY: Microglia are thought to play an important role in neuropathic pain. This study aimed to evaluate the protective effect of JMT against DNP and to investigate the underlying mechanisms in which the microglia and JAK2/STAT3 signaling pathway were mainly involved. MATERIALS AND METHODS: The chemical composition of JMT was analyzed using liquid chromatography tandem mass spectrometry. The diabetes model was constructed using 11 to 12-week-old male Zucker diabetic fatty (ZDF) rat (fa/fa). The model rats were divided into 5 groups and were given JMT at three dosages (11.6, 23.2, and 46.4 g/kg, respectively, calculated as the crude drug materials), JAK inhibitor AG490 (positive drug, 10 µg/day), and placebo (deionized water), respectively, for eight weeks (n = 6). Meanwhile, Zucker lean controls (fa/+) were given a placebo (n = 6). Body weight was tested weekly and blood glucose was monitored every 2 weeks. The mechanical allodynia and heat hyperalgesia were assessed using mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests. After treatment, the microglia activation marker Iba-1, CD11B, CD68, neuroinflammatory mediators, and mediators of the JAK2/STAT3 signaling pathway were compared between different groups. The mRNA and protein levels of target genes were assessed by quantitative real-time PCR and Western Blot, respectively. RESULTS: We found that JMT significantly inhibited the overactivation of microglia in spinal cords, and suppressed neuroinflammation of DNP model rats, thereby ameliorating neurological dysfunction and injuries. Furthermore, these effects of JMT could be attributed to the inhibition of the JAK2/STAT3 signaling pathway. CONCLUSIONS: Our findings suggested that JMT effectively ameliorated DNP by modulating microglia activation via inhibition of the JAK2/STAT3 signaling pathway. The present study provided a basis for further research on the therapeutic strategies of DNP.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Janus Quinase 2 , Microglia , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Janus Quinase 2/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
7.
Cells ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920657

RESUMO

The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.


Assuntos
Quimiocina CXCL12 , Neoplasias , Receptores CXCR4 , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Fator de Transcrição STAT3/metabolismo , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Receptores CXCR/metabolismo , Receptores CXCR/genética
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167281, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38870868

RESUMO

BACKGROUND & AIMS: Sepsis, a globally prevalent and highly lethal condition, remains a critical medical challenge. This investigation aims to assess the relevance of FGF1 as a potential therapeutic target for sepsis. METHODS: Sepsis was induced in C57BL/6 mice through LPS administration to establish an in vivo animal model. Various in vitro assays were conducted using human umbilical vein endothelial cells to elucidate the role of FGF1 in the disruption of the coagulation system and liver injury associated with sepsis, as well as to explore its underlying molecular mechanisms. RESULTS: In in vivo experiments, FGF1 ameliorated coagulation system disruption in septic mice by reducing the levels of pro-inflammatory and coagulation-related factors in the bloodstream. FGF1 also enhanced liver function in septic mice, mitigating liver inflammation and cell apoptosis, fostering liver vascular regeneration, increasing liver blood perfusion, and improving mouse survival. In vitro experiments demonstrated that FGF1 could inhibit LPS-induced inflammatory responses and apoptosis in endothelial cells, fortify endothelial cell barrier function, decrease endothelial cell permeability, promote endothelial cell proliferation, and restore endothelial cell tube-forming ability. Both in vivo and in vitro experiments substantiated that FGF1 improved sepsis by inhibiting the IL-6/STAT3 signaling pathway. CONCLUSION: In summary, our study indicates that FGF1 mitigates excessive inflammatory responses in sepsis by suppressing the IL-6/STAT3 signaling pathway, thereby improving systemic blood circulation and ameliorating liver damage in septic organisms. Consequently, this research identifies FGF1 as a potential clinical target for the treatment of human sepsis.

9.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882048

RESUMO

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Assuntos
Antineoplásicos Fitogênicos , Atractylodes , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Farmacologia em Rede , Fator de Transcrição STAT3 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Atractylodes/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação de Acoplamento Molecular , Astrágalo/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Medicina Tradicional Chinesa , Ensaios de Seleção de Medicamentos Antitumorais
10.
Immun Inflamm Dis ; 12(6): e1300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896093

RESUMO

OBJECTIVE: The sequelae of pelvic inflammatory disease (SPID) are major causes of secondary infertility. Modified Hongteng Baijiang decoction (MHTBD) has produced positive results in the treatment of patients with chronic pelvic inflammatory disease; however, its role in SPID remains elusive. Therefore, this study clarified the role of MHTBD in SPID pathogenesis. METHODS: The main components in MHTBD were analyzed by using liquid chromatography‒mass spectrometry (LC/MS). An SPID rat model was established, and the rats were treated with different doses of MHTBD (0.504 g of raw drug/kg, 1.008 g of raw drug/kg, and 2.016 g of raw drug/kg). Endometrial pinopodes were observed via scanning electron microscopy, endometrial thickness and inflammatory cell infiltration were assessed via HE staining, and the expression of estrogen receptor (ER), progesterone receptor (PR), integrin ß3 (ITGB3), and CD31 in the endometrium was detected by using immunohistochemistry. Western blot analysis was used to detect the protein expression of LIF, JAK2, p-JAK2, STAT3, and p-STAT3 in the endometrium. Moreover, the changes in the gut microbiota were analyzed via 16S rRNA sequencing. RESULTS: MHTBD improved endometrial receptivity, attenuated endometrial pathologic damage, reduced inflammatory cell infiltration, decreased ER and PR expression in the endometrium, and promoted the expression of LIF, p-JAK2, and p-STAT3 in the endometrium (p < .05) in SPID rats. Additionally, MHTBD treatment affected the composition of the gut microbiota in SPID rats. Furthermore, MHTBD attenuated endometrial receptivity and pathological damage in SPID rats by promoting the LIF/JAK2/STAT3 pathway. CONCLUSION: MHTBD attenuates SPID in rats by promoting the LIF/JAK2/STAT3 pathway and improving the composition of the gut microbiota. MHTBD may be a valuable drug for SPID therapy.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Janus Quinase 2 , Doença Inflamatória Pélvica , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Feminino , Ratos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Endométrio/patologia , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Janus Quinase 2/metabolismo , Doença Inflamatória Pélvica/tratamento farmacológico , Doença Inflamatória Pélvica/microbiologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Masculino
12.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848951

RESUMO

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Assuntos
Apoptose , Fator Neurotrófico Ciliar , Homocisteína , Células Endoteliais da Veia Umbilical Humana , Inflamação , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Homocisteína/farmacologia , Homocisteína/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Apoptose/efeitos dos fármacos , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos
13.
Arthritis Res Ther ; 26(1): 111, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812033

RESUMO

BACKGROUND: Due to the unclear pathogenesis of osteoarthritis (OA), effective treatment for this ailment is presently unavailable. Accumulating evidence points to chondrocyte senescence as a key driver in OA development. This study aims to identify OA-specific microRNAs (miRNAs) targeting chondrocyte senescence to alleviate OA progression. METHODS: We screened and identified miRNAs differentially expressed in OA and normal cartilage, then confirmed the impact of miR-653-5p on chondrocyte functions and senescence phenotypes through in vitro experiments with overexpression/silencing. We identified interleukin 6 (IL-6) as the target gene of miR-653-5p and confirmed the regulatory influence of miR-653-5p on the IL-6/JAK/STAT3 signaling pathway through gain/loss-of-function studies. Finally, we assessed the therapeutic efficacy of miR-653-5p on OA using a mouse model with destabilization of the medial meniscus. RESULTS: MiR-653-5p was significantly downregulated in cartilage tissues and chondrocytes from OA patients. Overexpression of miR-653-5p promoted chondrocyte matrix synthesis and proliferation while inhibiting chondrocyte senescence. Furthermore, bioinformatics target prediction and the luciferase reporter assays identified IL-6 as a target of miR-653-5p. Western blot assays demonstrated that miR-653-5p overexpression inhibited the protein expression of IL-6, the phosphorylation of JAK1 and STAT3, and the expression of chondrocyte senescence phenotypes by regulating the IL-6/JAK/STAT3 signaling pathway. More importantly, the cartilage destruction was significantly alleviated and chondrocyte senescence phenotypes were remarkably decreased in the OA mouse model treated by agomiR-653-5p compared to the control mice. CONCLUSIONS: MiR-653-5p showed a significant decrease in cartilage tissues of individuals with OA, leading to an upregulation of chondrocyte senescence phenotypes in the articular cartilage. AgomiR-653-5p emerges as a potential treatment approach for OA. These findings provide further insight into the role of miR-653-5p in chondrocyte senescence and the pathogenesis of OA.


Assuntos
Senescência Celular , Condrócitos , MicroRNAs , Osteoartrite , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Condrócitos/metabolismo , Condrócitos/patologia , Interleucina-6/metabolismo , Interleucina-6/genética , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
14.
J Genet Genomics ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750952

RESUMO

G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) remain poorly understood. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of Gpr160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell-cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of GPRGpr160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Consistent with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.

15.
Phytomedicine ; 130: 155735, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810557

RESUMO

BACKGROUND: Gastric cancer (GC) is difficult to treat with currently available treatments. Securinine (SCR) has a lengthy history of use in the treatment of disorders of the nervous system, and its anticancer potential has been gaining attention in recent years. The aim of this study was to explore the repressive effect of SCR on GC and its fundamental mechanism. METHODS: The efficacy of SCR in GC cells was detected by MTT assays. Colony formation, flow cytometry and Transwell assays were used to assess the changes in the proliferation, apoptosis, cell cycle distribution, migration and invasion of GC cells after treatment. AGS (human gastric carcinoma cell)-derived xenografts were used to observe the effect of SCR on tumor growth in vivo. The molecular mechanism of action of SCR in GC was explored via RNA sequencing, bioinformatics analysis, Western blotting, molecular docking, and immunohistochemistry. RESULTS: SCR was first discovered to inhibit the proliferation, migration, and invasion of GC cells while initiating apoptosis and cell cycle arrest in vitro. It was also established that SCR has excellent anticancer effects in vivo. Interestingly, AURKA acts as a crucial target of SCR, and AURKA expression can be blocked by SCR. Moreover, this study revealed that SCR suppresses the cell cycle and the ß-catenin/Akt/STAT3 pathways, which were previously reported to be regulated by AURKA. CONCLUSION: SCR exerts a notable anticancer effect on GC by targeting AURKA and blocking the cell cycle and ß-catenin/Akt/STAT3 pathway. Thus, SCR is a promising pharmacological option for the treatment of GC.


Assuntos
Aurora Quinase A , Azepinas , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Neoplasias Gástricas , beta Catenina , Neoplasias Gástricas/tratamento farmacológico , Humanos , Fator de Transcrição STAT3/metabolismo , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Animais , beta Catenina/metabolismo , Azepinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Dioxolanos/farmacologia , Camundongos Endogâmicos BALB C , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinogênese/efeitos dos fármacos , Simulação de Acoplamento Molecular , Lactonas , Piperidinas
16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2188-2196, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812234

RESUMO

This study aims to investigate the protective effect of salidroside(SAL) on renal damage in diabetic nephropathy(DN) mice based on the receptor for advanced glycation end products/janus activated kinase 1/signal transduction and activator of transcription 3(RAGE/JAK1/STAT3) signaling pathway. The mouse DN model was established by high-fat/high-sucrose diets combined with intraperitoneal injection of streptozocin(STZ). Mice were randomly divided into normal group, model group, low-dose SAL group(20 mg·kg~(-1)), high-dose SAL group(100 mg·kg~(-1)), and metformin group(140 mg·kg~(-1)), with 12 mice in each group. After establishing the DN model, mice were given drugs or solvent intragastrically, once a day for consecutive 10 weeks. Body weight, daily water intake, and fasting blood glucose(FBG) were measured every two weeks. After the last dose, the glucose tolerance test was performed, and the samples of 24-hour urine, serum, and kidney tissue were collected. The levels of 24 hours urinary total protein(24 h-UTP), serum creatinine(Scr), blood urea nitrogen(BUN), triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), and high density lipoprotein cholesterol(HDL-C) were detected by biochemical tests. Periodic acid-schiff(PAS) staining was used to observe the pathological changes in the kidney tissue. The protein expressions of α-smooth muscle actin(α-SMA), vimentin, and advanced glycation end products(AGEs) in kidneys were detected by immunohistochemical staining. The activities of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GSH-PX), and the level of malondialdehyde(MDA) in kidneys were detected by using a corresponding detection kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of AGEs, carboxymethyllysine(CML), and carboxyethyllysine(CEL) in serum. The protein expressions of RAGE and the phosphorylation level of JAK1 and STAT3 in kidneys were detected by Western blot. Compared with the normal group, the levels of FBG, the area under the curve of glucose(AUCG), water intake, kidney index, 24 h-UTP, tubular injury score, extracellular matrix deposition ratio of the renal glomerulus, the serum levels of Scr, BUN, TG, LDL-C, AGEs, CEL, and CML, the level of MDA, the protein expressions of α-SMA, vimentin, AGEs, and RAGE, and the phosphorylation level of JAK1 and STAT3 in kidney tissue were increased significantly(P<0.01), while the level of HDL-C in serum and the activity of SOD, CAT, and GSH-PX in kidney tissue were decreased significantly(P<0.01). Compared with the model group, the above indexes of the high-dose SAL group were reversed significantly(P<0.05 or P<0.01). In conclusion, this study suggests that SAL can alleviate oxidative stress and renal fibrosis by inhibiting the activation of AGEs-mediated RAGE/JAK1/STAT3 signaling axis, thus playing a potential role in the treatment of DN.


Assuntos
Nefropatias Diabéticas , Glucosídeos , Janus Quinase 1 , Rim , Fenóis , Receptor para Produtos Finais de Glicação Avançada , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/administração & dosagem , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais/efeitos dos fármacos , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fenóis/farmacologia , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Humanos , Camundongos Endogâmicos C57BL , Glicemia/metabolismo , Glicemia/efeitos dos fármacos
17.
Mol Cell Biol ; 44(5): 178-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38767243

RESUMO

Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Lisofosfolipídeos , Neovascularização Patológica , Osteossarcoma , Fosfotransferases (Aceptor do Grupo Álcool) , Fator de Transcrição STAT3 , Transdução de Sinais , Esfingosina , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Lisofosfolipídeos/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Linhagem Celular Tumoral , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Ativação Transcricional/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/genética , Movimento Celular/genética , Masculino , Animais , Feminino , Angiogênese
18.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794201

RESUMO

Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains relatively unexplored. To explore the effect of PatA on diabetes-induced cardiac injury and dysfunction in mice, streptozotocin (STZ) was used to mimic type 1 diabetes in mice. Serological markers and echocardiography show that PatA treatment protects the heart against cardiomyopathy by controlling myocardial fibrosis but not by reducing hyperglycemia in diabetic mice. Discovery Studio 2017 software was used to perform reverse target screening of PatA, and we found that JAK2 may be a potential target of PatA. RNA-seq analysis of heart tissues revealed that PatA activity in the myocardium was primarily associated with the inflammatory fibrosis through the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. In vitro, we also found that PatA alleviates high glucose (HG) + palmitic acid (PA)-induced fibrotic and inflammatory responses via inhibiting the JAK2/STAT3 signaling pathway in H9C2 cells. Our findings illustrate that PatA mitigates the effects of HG + PA- or STZ-induced cardiomyopathy by acting on the JAK2/STAT3 signaling pathway. These insights indicate that PatA could potentially serve as a therapeutic agent for DCM treatment.

19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 644-651, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708496

RESUMO

OBJECTIVE: To observe the effect of Shenqi Chongcao (SQCC) Formula on the ASS1/src/STAT3 signaling pathway in a rat model of lung fibrosis and explore its therapeutic mechanism. METHODS: A total of 120 male SD rats were divided equally into 5 groups, including a blank control group with saline treatment and 4 groups of rat models of idiopathic pulmonary fibrosis induced by intratracheal instillation of bleomycin. One day after modeling, the rat models were treated with daily gavage of 10 mL/kg saline, SQCC decoction (0.423 g/kg), pirfenidone (10 mL/kg), or intraperitoneal injection of arginine deiminase (ADI; 2.25 mg/kg, every 3 days) for 28 days. After the treatments, the lung tissues of the rats were collected for calculating the lung/body weight ratio, observing histopathology using HE and Masson staining, and analyzing the inflammatory cells in BALF using Giemsa staining. Serum chemokine ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1) levels were measured with ELISA. The protein expressions of src, p-srcTry529, STAT3, and p-STAT3Try705 and the mRNA expressions of ASS1, src and STAT3 in the lung tissues were detected using Western blotting and RT-qPCR. RESULTS: The neutrophil, macrophage and lymphocyte counts and serum levels of CCL2 and TGF-ß1 were significantly lower in SQCC, pirfenidone and ADI treatment groups than in the model group at each time point of measurement (P < 0.05). P-srcTry529 and p-STAT3Try705 protein expression levels and ASS1, src, and STAT3 mRNA in the lung tissues were also significantly lower in the 3 treatment groups than in the model group (P < 0.05). CONCLUSION: SQCC Formula can alleviate lung fibrosis in rats possibly by activating the ASS1/src/STAT3 signaling pathway in the lung tissues.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Ratos , Bleomicina , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Carbono-Carbono Ligases/efeitos dos fármacos , Carbono-Carbono Ligases/metabolismo
20.
Inflammation ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760646

RESUMO

Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK­242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)­induced colitis in vivo. TAK­242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA