Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Nutr Biochem ; : 109775, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370013

RESUMO

Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups. The first group served as a normal control (NC), while type 2 diabetes (T2D) was induced in the remaining groups using a high-fat diet (HFD) for 12 weeks followed by a single dose of streptozotocin (STZ, 30 mg/kg). One diabetic group remained untreated (DC), while the other two groups received an eight-week treatment with either EVOO (90 g/kg of the diet) (DO) or hydroxytyrosol (17.3 mg/kg of the diet) (DH). The DC group exhibited hallmark features of established T2D, including elevated fasting blood glucose levels, impaired glucose tolerance, increased HOMA-IR, widespread downregulation of insulin receptor expression, heightened oxidative stress, and impaired ß-cell function. In contrast, treatments with EVOO and hydroxytyrosol elicited an antidiabetic response, characterized by improved glucose tolerance, as indicated by accelerated blood glucose clearance. Systematic analysis revealed the underlying antidiabetic mechanisms: both treatments enhanced insulin receptor expression in the liver and skeletal muscles, increased adiponectin levels, and mitigated oxidative stress. Moreover, while EVOO reduced intramyocellular lipids, hydroxytyrosol restored adipose tissue insulin sensitivity and enhanced ß-cell survival. Molecular docking and dynamics confirm hydroxytyrosol's high affinity binding to PGC-1α, IRE-1α, and PPAR-γ, particularly IRE-1α, highlighting its potential to modulate diabetic signaling pathways. Collectively, these mechanisms highlight the putative antidiabetic role of EVOO and hydroxytyrosol. Moreover, the favorable docking scores of hydroxytyrosol with PGC-1α, IRE-1α, and PPAR-γ support the antidiabetic potential and offer promising avenues for further research and the development of novel antidiabetic therapies.

2.
J Physiol ; 602(14): 3575-3592, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857419

RESUMO

In early diabetic nephropathy (DN), recent studies have shown that albuminuria stems mostly from alterations in tubular function rather than from glomerular damage. Several factors in DN, including hyperfiltration, hypertrophy and reduced abundance of the albumin receptors megalin and cubilin, affect albumin endocytosis in the proximal tubule (PT). To assess their respective contribution, we developed a model of albumin handling in the rat PT that couples the transport of albumin to that of water and solutes. Our simulations suggest that, under basal conditions, ∼75% of albumin is retrieved in the S1 segment. The model predicts negligible uptake in S3, as observed experimentally. It also accurately predicts the impact of acute hyperglycaemia on urinary albumin excretion. Simulations reproduce observed increases in albumin excretion in early DN by considering the combined effects of increased glomerular filtration rate (GFR), osmotic diuresis, hypertrophy, and megalin and cubilin downregulation, without stipulating changes in glomerular permselectivity. The results indicate that in isolation, glucose-elicited osmotic diuresis and glucose transporter upregulation raise albumin excretion only slightly. Enlargement of PT diameter not only augments uptake via surface area expansion, but also reduces fluid velocity and thus shear stress-induced stimulation of endocytosis. Overall, our model predicts that downregulation of megalin and cubilin and hyperfiltration both contribute significantly to increasing albumin excretion in rats with early-stage diabetes. The results also suggest that acute sodium-glucose cotransporter 2 inhibition lowers albumin excretion only if GFR decreases sufficiently, and that angiotensin II receptor blockers mitigate urinary albumin loss in early DN in large part by upregulating albumin receptor abundance. KEY POINTS: The urinary excretion of albumin is increased in early diabetic nephropathy (DN). It is difficult to experimentally disentangle the multiple factors that affect the renal handling of albumin in DN. We developed a mathematical model of albumin transport in the rat proximal tubule (PT) to examine the impact of elevated plasma glucose, hyperfiltration, PT hypertrophy and reduced abundance of albumin receptors on albumin uptake and excretion in DN. Our model predicts that glucose-elicited osmotic diuresis per se raises albumin excretion only slightly. Conversely, increases in PT diameter and length favour reduced albumin excretion. Our results suggest that downregulation of the receptors megalin and cubilin in PT cells and hyperfiltration both contribute significantly to increasing albumin excretion in DN. The model helps to better understand the mechanisms underlying urinary loss of albumin in early-stage diabetes, and the impact of specific treatments thereupon.


Assuntos
Nefropatias Diabéticas , Túbulos Renais Proximais , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Ratos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Túbulos Renais Proximais/metabolismo , Albuminas/metabolismo , Taxa de Filtração Glomerular , Receptores de Superfície Celular/metabolismo , Albuminúria/metabolismo , Modelos Biológicos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Endocitose/fisiologia
3.
Biomed Pharmacother ; 175: 116731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761421

RESUMO

Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Suplementos Nutricionais , Extratos Vegetais , Rosmarinus , Animais , Extratos Vegetais/farmacologia , Rosmarinus/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Ratos , Ratos Wistar , Metabolômica , Metaboloma/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estreptozocina , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 8089-8099, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38789633

RESUMO

Cardiovascular functions in diabetes greatly depend on constitutive NOS (cNOS) activity. A comparative study of the effects of a steroid hormone ecdysterone and enalapril, an ACE inhibitor widely used to treat cardiac disorders on cNOS, inducible NOS (iNOS), xanthine oxidoreductase (XOR) activity, RNS, ROS, and lipid peroxidation in heart tissue in experimental diabetes was conducted. The rat model of diabetes was established by streptozotocin injection. NOS activity, NO2-, NO3-, uric acid, nitrosothiols, hydroperoxide, superoxide, and diene conjugate formation were studied spectrophotomerically. In diabetes, cNOS downregulation correlated with a dramatic fall of NO2- production and ~4.5-fold elevation of nitrosothiols, which agreed with a steep rise of iNOS activity, while NO3- remained close to control. Dramatic activation of XOR was observed, which correlated with the elevation of both superoxide production and nitrate reductase activity and resulted in strong lipid peroxidation. Ecdysterone and enalapril differently affected RNS metabolism. Ecdysterone moderately restored cNOS but strongly suppressed iNOS, which resulted in the reduction of NO3-, but full restoration of NO2- production. Enalapril better restored cNOS but less effectively suppressed iNOS, which promoted NO3- formation. Both drugs similarly inhibited XOR, which equally alleviated oxidative stress and lipid peroxidation. The synergistic action of iNOS and XOR was a plausible explanation for strong lipid peroxidation, abolished by the inhibition of iNOS and XOR by ecdysterone or enalapril. Complementary effects of ecdysterone and enalapril on cNOS, iNOS, and RNS are a promising basis for their combined use in the treatment of cardiovascular disorders caused by cNOS dysfunction in diabetes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Diabetes Mellitus Experimental , Ecdisterona , Enalapril , Óxido Nítrico , Estresse Oxidativo , Ratos Wistar , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Enalapril/farmacologia , Enalapril/uso terapêutico , Masculino , Ecdisterona/farmacologia , Óxido Nítrico/metabolismo , Ratos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estreptozocina , Biomarcadores/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Miocárdio/metabolismo
5.
Talanta ; 274: 126035, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579421

RESUMO

Bamboo shoots are nutritionally rich source of antioxidants and bioactive compounds with immense therapeutic potentials. The fresh shoot is acrid and needs to be processed to make it palatable. Fermentation is one the best processing methods for long term storage and make the shoot palatable and enhance taste. This study aims to assess the prophylactic hepatoprotective effects of fresh and fermented B. nutans shoot aqueous extract (200 mg/kg b.w.) in STZ induced diabetic LACA mice. Both extracts effectively improved body weight loss, hyperglycemia, and hepatomegaly. Fresh shoot reduced LDH activity and LPO level by 26.1% and 46.6%, while fermented shoot reduced them by 51.5% and 55.8%, respectively. The fermented shoot extract group demonstrated a noteworthy decrease in liver enzymes (SGPT, SGOT, ALP, and bilirubin levels) and an increase in albumin and A/G ratio, with more substantial improvements compared to the group treated with fresh extract. Additionally, the extracts enhanced antioxidant activities and showed histological improvements in hepatocytes and central vein structure. The findings indicate that both fresh and fermented B. nutans extracts are non-toxic and possess hepatoprotective potential in hyperglycaemic liver dysfunction, with fermented shoot extract exhibiting superior efficacy suggesting its potential as a therapeutic agent for hyperglycemic liver conditions.


Assuntos
Bambusa , Diabetes Mellitus Experimental , Fermentação , Fígado , Extratos Vegetais , Brotos de Planta , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Bambusa/química , Brotos de Planta/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Antioxidantes/farmacologia , Estreptozocina , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Glicemia/metabolismo , Glicemia/análise , Glicemia/efeitos dos fármacos
6.
Life Sci ; 344: 122546, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462227

RESUMO

BACKGROUND: Autophagy is a well-preserved mechanism essential in minimizing endoplasmic reticulum stress (ER)-related cell death. Defects in ß-cell autophagy have been linked to type 1 diabetes, particularly deficits in the secretion of insulin, boosting ER stress sensitivity and possibly promoting pancreatic ß-cell death. Quercetin (QU) is a potent antioxidant and anti-diabetic flavonoid with low bioavailability, and the precise mechanism of its anti-diabetic activity is still unknown. Aim This study aimed to design an improved bioavailable form of QU (liposomes) and examine the impact of its treatment on the alleviation of type 1 diabetes induced by STZ in rats. METHODS: Seventy SD rats were allocated into seven equal groups 10 rats of each: control, STZ, STZ + 3-MA, STZ + QU-Lip, and STZ + 3-MA + QU-Lip. Fasting blood glucose, insulin, c-peptide, serum IL-6, TNF-α, pancreatic oxidative stress, TRAF-6, autophagy, endoplasmic reticulum stress (ER stress) markers expression and their regulatory microRNA (miRNA) were performed. As well as, docking analysis for the quercetin, ER stress, and autophagy were done. Finally, the histopathological and immunohistochemical analysis were conducted. SIGNIFICANCE: QU-Lip significantly decreased glucose levels, oxidative, and inflammatory markers in the pancreas. It also significantly downregulated the expression of ER stress and upregulated autophagic-related markers. Furthermore, QU-Lip significantly ameliorated the expression of several MicroRNAs, which both control autophagy and ER stress signaling pathways. However, the improvement of STZ-diabetic rats was abolished upon combination with an autophagy inhibitor (3-MA). The findings suggest that QU-Lip has therapeutic promise in treating type 1 diabetes by modulating ER stress and autophagy via an epigenetic mechanism.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , MicroRNAs , Nanopartículas , Ratos , Masculino , Animais , Quercetina/uso terapêutico , Lipossomos/uso terapêutico , MicroRNAs/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Lábio/metabolismo , Lábio/patologia , Ratos Wistar , Ratos Sprague-Dawley , Pâncreas/metabolismo , Estresse Oxidativo , Insulina/metabolismo , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Autofagia
7.
J Ethnopharmacol ; 326: 117911, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38355028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. AIM OF THE STUDY: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. MATERIALS AND METHODS: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. RESULTS: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 µg/g) and chlorogenic acid (6532.65 µg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. CONCLUSIONS: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.


Assuntos
Costus , Diabetes Mellitus Experimental , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estreptozocina , Costus/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Metabolismo dos Carboidratos , Anti-Inflamatórios/farmacologia , Lipídeos/uso terapêutico , Glicemia
8.
Saudi Pharm J ; 31(9): 101727, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37638219

RESUMO

In the past, curcumin was the go-to medication for diabetes, but recent studies have shown that tetrahydrocurcumin is more effective. The problem is that it's not very soluble in water or very bioavailable. So, our research aims to increase the bioavailability and anti-diabetic efficacy of tetrahydrocurcumin in streptozotocin-induced diabetic rats by synthesizing tetrahydrocurcumin-loaded solid lipid nanoparticles. Box Behnken Design was employed for the optimization of tetrahydrocurcumin-loaded solid lipid nanoparticles (THC-SLNs). The optimal formulation was determined by doing an ANOVA to examine the relationship between the independent variables (drug-to-lipid ratio, surfactant concentration, and co-surfactant concentration) and the dependent variables (particle size, percent entrapment efficiency, and PDI). Particle size, PDI, and entrapment efficiency all showed statistical significance based on F-values and p-values. The optimized batch was prepared using a drug-to-lipid ratio (1:4.16), 1.21% concentration of surfactant, and 0.4775% co-surfactant (observed with a particle size of 147.1 nm, 83.58 ± 0.838 % entrapment efficiency, and 0.265 PDI, and the values were found very close with the predicted ones. As the THC peak vanishes from the DSC thermogram of the improved formulation, this indicates that the drug has been transformed from its crystalline form into its amorphous state. TEM analysis of optimized formulation demonstrated mono-dispersed particles with an average particle size of 145 nm which are closely related to zetasizer's results. In-vitro release study of optimized formulation demonstrated burst release followed by sustained release up to 71.04% throughout 24 hrs. Increased bioavailability of the adjusted THC-SLN was found in an in vivo pharmacokinetics research with 9.47 folds higher AUC(0-t) compared to plain THC-suspension. Additionally, pharmacodynamic experiments of optimized formulation demonstrated a marked decrease in blood glucose level to 63.7% and increased body weight from 195.8 ± 7.223 to 231.2 ± 7.653 on the 28th day of the study and showed a better anti-diabetic effect than plain drug suspension. Results of stability studies revealed that formulation can be stored for longer periods at room temperature. Tetrahydrocurcumin can be effectively administered by SLN for the treatment of diabetes.

9.
Animal Model Exp Med ; 6(3): 211-220, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37317044

RESUMO

BACKGROUND: Hyperglycemia is a characteristic feature of diabetes that often results in neuropsychological complications such as depression. Diabetic individuals are more vulnerable to experience depression compared to the normal population. Thus, novel treatment approaches are required to reduce depressive symptoms among diabetic individuals. Traditional Chinese medicines (TCMs) such as Shengmai San (SMS) and Radix puerariae (R) are usually widely used to treat ailments such as neurological complications since ancient time. METHODS: In this study, SMS was combined with R to prepare an R-SMS formulation and screened for their antidepressant activity in diabetic rats. The antidepressant potential of the prepared combination was evaluated behaviorally using open field test, novelty-induced hypophagia, and forced swim test in diabetic rats with biochemical and protein expression (PI3K, BDNF [brain-derived neurotrophic factor], and SYN [presynaptic vesicle protein]) analysis. RESULTS: Diabetic rats (streptozotocin, 45 mg/kg) showed elevated fasting blood glucose (FBG) >12 mM with depressive symptoms throughout the study. Treatment with R-SMS (0.5, 1.5, and 4.5 g/kg) significantly reverted depressive symptoms in diabetic rats as evinced by significantly (p < 0.05) reduced immobility time with an increased tendency to eat food in a novel environment. Treatment with R-SMS also significantly increased the protein expression of PI3K, BDNF, and SYN protein, which play a crucial role in depression. CONCLUSION: This study showed that R-SMS formulation antagonized depressive symptoms in diabetic rats; thus, this formulation might be studied further to develop as an antidepressant.


Assuntos
Diabetes Mellitus Experimental , Pueraria , Ratos , Animais , Depressão/etiologia , Depressão/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases , Pueraria/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
10.
Int J Neurosci ; 133(4): 343-355, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33848216

RESUMO

Background: Diabetes can impair cognitive performance and lead to dementia. Patients with type 1 diabetes mellitus (T1DM) are reported with different levels of cognitive dysfunctions in various cognitive domains ranging from general intellectual testing to specific deficits with visuospatial abilities, motor speed, writing, attention, reading, and psychomotor efficiency. The present study aimed to investigate the effect of Citrullus colocynthis on cognitive functions.Methods: A total of 42 male Wistar rats (3-4 months old and weighing 200-250 g) were tested in the current study. Rats were randomly allocated into 3 groups of control, Diabetes, and Diabetes + Drug. The diabetic rats received Citrullus colocynthis extraction orally. The behavioral tests included the open field, elevated plus maze (EPM), novel object recognition (NOR), passive avoidance tests, and Morris Water Maze (MWM) tests. Data were analyzed using student and paired t-tests via SPSS software version 16.Results: Our results showed the protective effects of Citrullus colocynthis administration against cognitive impairments. This is followed by STZ-induced diabetes in the MWM, novel object recognition, and passive avoidance tasks. Also, it was found that Citrullus colocynthis improved anxiety in diabetic rats.Conclusion According to the findings of this study, the administration of 200 mg/kg C. colocynthis once per day for 40 days can lead to ameliorated cognitive impairments and antidiabetic effects such as increasing body weight and decreasing FBS.


Assuntos
Citrullus colocynthis , Citrullus , Diabetes Mellitus Experimental , Ratos , Masculino , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos Wistar , Extratos Vegetais/farmacologia , Hipoglicemiantes , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Cognição
11.
J Pharm Pharmacol ; 74(12): 1758-1764, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36206181

RESUMO

OBJECTIVES: The antimalarial drug artemether is suggested to effect pancreatic islet cell transdifferentiation, presumably through activation γ-aminobutyric acid receptors, but this biological action is contested. METHODS: We have investigated changes in α-cell lineage in response to 10-days treatment with artemether (100 mg/kg oral, once daily) on a background of ß-cell stress induced by multiple low-dose streptozotocin (STZ) injection in GluCreERT2; ROSA26-eYFP transgenic mice. KEY FINDINGS: Artemether intervention did not affect the actions of STZ on body weight, food and fluid intake or blood glucose. Circulating insulin and glucagon were reduced by STZ treatment, with a corresponding decline in pancreatic insulin content, which were not altered by artemether. The detrimental changes to pancreatic islet morphology induced by STZ were also evident in artemether-treated mice. Tracing of α-cell lineage, through co-staining for glucagon and yellow fluorescent protein (YFP), revealed a significant decrease of the proportion of glucagon+YFP- cells in STZ-diabetic mice, which was reversed by artemether. However, artemether had no effect on transdifferentiation of α-cells into ß-cells and failed to augment the number of bi-hormonal, insulin+glucagon+, islet cells. CONCLUSIONS: Our observations confirm that artemisinin derivatives do not impart meaningful benefits on islet cell lineage transition events or pancreatic islet morphology.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Transdiferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Artemeter/farmacologia , Artemeter/metabolismo , Artemeter/uso terapêutico , Glicemia , Estreptozocina/farmacologia
12.
J Chem Neuroanat ; 125: 102160, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089179

RESUMO

Incidence of cognitive and emotional alterations are reportedly two times more in diabetic patients than in non-diabetic population with hitherto unexplained causation and mechanism. Purview of the hippocampus functional diversity sanctions the accessibility and the necessity to investigate the regional neuro-immunological aspects of neurodegeneration and related functional alterations following diabetes. We examined the possible involvement of microglia activation, macrophage response, oxidative stress and inflammatory stature in both ventral and dorsal hippocampus of rats rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/ kg body weight; intraperitoneal). Cognitive and behavioural alterations were studied using open field test (locomotor activity), elevated plus maze (anxiety), Barnes maze (spatial cognition) and T maze (working memory) at 2nd, 4th, 6th, 8th, 10th and 12th week post diabetic confirmation. Oxidative stress was investigated via measuring the level of lipid peroxidation biochemically. Scenario of microglia activation, macrophage response and inflammation was gauged using qualitative and quantitative analysis. Pronounced macrophage expression and activation directed microglia phenotypic switching was prominent in both ventral and dorsal hippocampus indicating the impact of oxidative stress following diabetes in hippocampus. The resultant inflammatory response was also progressive and persistent in both ventral and dorsal hippocampus parallel to the altered cognitive, locomotor ability and anxiety behaviour in diabetic rats. Conclusively, present data not only comprehends the microglia, macrophage physiology and related immune response in functionally different hippocampal regions associated cognitive and behavioural deficits, but also offers a suggestive region-specific cellular mechanism pathway for developing an imminent therapeutic approach during particular diabetes deficits.


Assuntos
Diabetes Mellitus Experimental , Microglia , Animais , Ratos , Microglia/metabolismo , Aprendizagem em Labirinto , Diabetes Mellitus Experimental/metabolismo , Ativação de Macrófagos , Ratos Wistar , Hipocampo/metabolismo , Estreptozocina , Inflamação/metabolismo
13.
Pharmaceutics ; 14(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35213996

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder that threatens human health. Medicinal plants have been a source of wide varieties of pharmacologically active constituents and used extensively as crude extracts or as pure compounds for treating various disease conditions. Thus, the aim of this study is to assess the anti-hyperglycemic and anti-hyperlipidemic effects and the modes of action of the aqueous extracts of the fruits and seeds of Balanites aegyptiaca (B. aegyptiaca) in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. Gas chromatography-mass spectrometry analysis indicated that 3,4,6-tri-O-methyl-d-glucose and 9,12-octadecadienoic acid (Z,Z)- were the major components of the B. aegyptiaca fruit and seed extracts, respectively. A single intraperitoneal injection of STZ (60 mg/kg body weight (b.w.)) 15 min after intraperitoneal NA injection (60 mg/kg b.w.) was administered to induce type 2 DM. After induction was established, the diabetic rats were treated with the B. aegyptiaca fruit and seed aqueous extracts (200 mg/kg b.w./day) via oral gavage for 4 weeks. As a result of the treatments with the B. aegyptiaca fruit and seed extracts, the treated diabetic-treated rats exhibited a significant improvement in the deleterious effects on oral glucose tolerance; serum insulin, and C-peptide levels; liver glycogen content; liver glucose-6-phosphatase and glycogen phosphorylase activities; serum lipid profile; serum free fatty acid level; liver lipid peroxidation; glutathione content and anti-oxidant enzyme (glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase) activities; and the mRNA expression of the adipose tissue expression of the insulin receptor ß-subunit. Moreover, the treatment with fruit and seed extracts also produced a remarkable improvement of the pancreatic islet architecture and integrity and increased the islet size and islet cell number. In conclusion, the B. aegyptiaca fruit and seed aqueous extracts exhibit potential anti-hyperglycemic and anti-hyperlipidemic effects, which may be mediated by increasing the serum insulin levels, decreasing insulin resistance, and enhancing the anti-oxidant defense system in diabetic rats.

14.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678531

RESUMO

The purpose of this study was to see how chrysin and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) affected streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats as an animal model of type 2 diabetes mellitus (T2DM). Male Wistar rats were given a single intraperitoneal (i.p.) injection of 60 mg STZ/kg bodyweight (bw) 15 min after an i.p. injection of NA (120 mg/kg bw) to induce T2DM. The diabetic rats were given chrysin orally at a dose of 100 mg/kg bw every other day, BM-MSCs intravenously at a dose of 1 × 106 cells/rat/week, and their combination for 30 days after diabetes induction. The rats in the diabetic group displayed impaired oral glucose tolerance and a decrease in liver glycogen content and in serum insulin, C-peptide, and IL-13 levels. They also had significantly upregulated activities in terms of liver glucose-6-phosphatase and glycogen phosphorylase and elevated levels of serum free fatty acids, IL-1ß, and TNF-α. In addition, the diabetic rats exhibited a significant elevation in the adipose tissue resistin protein expression level and a significant decrease in the expression of adiponectin, insulin receptor-beta subunit, insulin receptor substrate-1, and insulin receptor substrate-2, which were associated with a decrease in the size of the pancreatic islets and in the number of ß-cells and insulin granules in the islets. The treatment of diabetic rats with chrysin and/or BM-MSCs significantly improved the previously deteriorated alterations, with chrysin combined with BM-MSCs being the most effective. Based on these findings, it can be concluded that combining chrysin with BM-MSCs produced greater additive therapeutic value than using them separately in NA/STZ-induced T2DM rats.

15.
Front Pharmacol ; 12: 682987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025439

RESUMO

In our previous study, we showed that ellagitannin- and procyanidin-rich tormentil extract (TE) decreased experimental arterial thrombosis in normoglycemic rats through platelet inhibition. TE also slightly increased coagulation and attenuated fibrinolysis; however, these effects did not nullify the antithrombotic effect of TE. The present study aimed to assess whether TE exerts antithrombotic activity in streptozotocin (STZ)-induced diabetes, which is characterized by pre-existing increased coagulation and impaired fibrinolysis, in vivo and ex vivo thrombosis assays. TE (100, 200, or 400 mg/kg, p. o.) was administered for 14 days to STZ-induced diabetic rats and mice. TE at 100 mg/kg dose decreased the thrombus area in the mice model of laser-induced thrombosis through its potent antiplatelet effect. However, TE at 200 mg/kg dose increased thrombus weight in electrically induced arterial thrombosis in rats. The prothrombotic effect could be due to increased coagulation and attenuated fibrinolysis. TE at 400 mg/kg dose also improved vascular functions, which was mainly reflected as an increase in the arterial blood flow, bleeding time prolongation, and thickening of the arterial wall. However, TE at 400 mg/kg dose did not exert antithrombotic effect. Summarizing, the present results show that TE may exert multidirectional effects on hemostasis in STZ-induced diabetic rats and mice. TE inhibited platelet activity and improved endothelial functions, but it also showed unfavorable effects by increasing the activity of the coagulation system and by inhibiting fibrinolysis. These contrasting effects could be the reason for model-specific influence of TE on the thrombotic process in STZ-induced diabetes.

16.
Assay Drug Dev Technol ; 19(4): 262-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000202

RESUMO

Due to poor bioavailability and chemical instability, the effectiveness of curcumin is negligible in the treatment of numerous diseases. Solid lipid nanoparticles (SLNs) increase the bioavailability of lipophilic compounds and protect the drug from gastrointestinal degradation. The objective of our study is the utilization of SLNs to improve the pharmacokinetics and pharmacodynamics of curcumin in the management of diabetes mellitus. Central composite design was used to prepare curcumin-loaded SLNs (Cur-SLN). The analysis of independent variables like drug concentration, lipid concentration, and surfactant concentration was carried out using analysis of variance (ANOVA) to obtain the optimized batch (optimized Cur-SLN) having the desired values of dependent variables particle size and entrapment efficiency. In vitro release, differential scanning calorimeter (DSC), transmission electron microscopy (TEM), and Fourier Transform Infra-Red (FTIR) studies of optimized Cur-SLN were carried out and then its pharmacokinetic and pharmacodynamic studies were performed. The model was found to be significant for particle size and entrapment efficiency based on F-value and p-value. The optimized batch's predicted values were in close agreement with the actual values of particle size and entrapment efficiency. TEM results confirm mono-dispersion and spherical shape of particles in the formulation. The DSC results confirmed the changing of drug from crystalline to amorphous form. Burst release followed by the sustained release was obtained in the in vitro release studies. The pharmacokinetic study shows enhanced bioavailability of optimized Cur-SLN compared with a plain drug suspension. The optimized Cur-SLN achieved higher antidiabetic activity in streptozotocin-induced diabetes mellitus rats than the plain drug suspension. SLNs can be used as a promising technique for delivering curcumin in the management of diabetes mellitus.


Assuntos
Curcumina/administração & dosagem , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Animais , Disponibilidade Biológica , Curcumina/farmacocinética , Portadores de Fármacos , Composição de Medicamentos , Desenho de Fármacos , Liberação Controlada de Fármacos , Hipoglicemiantes/farmacocinética , Lipídeos , Nanopartículas , Tamanho da Partícula , Ratos , Ratos Wistar , Tensoativos
17.
Front Endocrinol (Lausanne) ; 12: 619696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746901

RESUMO

Prolactin (PRL) levels are reduced in the circulation of rats with diabetes or obesity, and lower circulating levels of PRL correlate with increased prevalence of diabetes and a higher risk of metabolic alterations in the clinic. Furthermore, PRL stimulates ß-cell proliferation, survival, and insulin production and pregnant mice lacking PRL receptors in ß-cells develop gestational diabetes. To investigate the protective effect of endogenous PRL against diabetes outside pregnancy, we compared the number of cases and severity of streptozotocin (STZ)-induced hyperglycemia between C57BL/6 mice null for the PRL receptor gene (Prlr-/- ) and wild-type mice (Prlr+/+ ). STZ-treated diabetic Prlr-/- mice showed a higher number of cases and later recovery from hyperglycemia, exacerbated glucose levels, and glucose intolerance compared to the Prlr+/+ mice counterparts. Consistent with the worsening of hyperglycemia, pancreatic islet density, ß-cell number, proliferation, and survival, as well as circulating insulin levels were reduced, whereas α-cell number and pancreatic inflammation were increased in the absence of PRL signaling. Deletion of the PRL receptor did not alter the metabolic parameters in vehicle-treated animals. We conclude that PRL protects whole body glucose homeostasis by reducing ß-cell loss and pancreatic inflammation in STZ-induced diabetes. Medications elevating PRL circulating levels may prove to be beneficial in diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/genética , Intolerância à Glucose/genética , Insulina/sangue , Receptores da Prolactina/genética , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/sangue , Intolerância à Glucose/sangue , Células Secretoras de Insulina/metabolismo , Camundongos , Receptores da Prolactina/metabolismo
18.
Probiotics Antimicrob Proteins ; 13(4): 1068-1080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33575913

RESUMO

The growing incidence of type 2 diabetes and obesity has become a worldwide crisis with increased socio-economic burden. Changes in lifestyle and food habits resulting in dysbiosis of the gut microbiota and low-grade inflammation are linked to the rising incidence. The aim of this study was to investigate the effects of potential probiotic Lactobacillus fermentum MCC2759 and MCC2760 on intestinal markers of inflammation using a high-fat diet (HFD)-fed model and a streptozotocin (STZ)-induced diabetic model. Lact. fermentum administration showed improved oral glucose tolerance compared with the model controls of HFD (AUC 1518) and STZ (628.8). Plasma insulin levels improved in the Lact. fermentum treated groups of HFD + MCC2759 (129 ± 4.24 pmol/L) and HFD + MCC2760 (151.5 ± 9.19 pmol/L) in HFD study, while in STZ diabetic study, the insulin levels were normalized with Lact. fermentum administration, for D + MCC2759 (120.5 ± 7.77) and D + MCC2760 (138 ± 5.65 pmol/L) groups. The results showed reduction in inflammatory tone in liver, muscle, and adipose tissues of rats in both models with stimulation of anti-inflammatory IL-10 by real-time quantitative polymerase chain reaction. Additionally, the potential probiotic cultures also displayed normalization of markers related to intestinal barrier integrity (ZO-1), TLR-4 receptor, and insulin sensitivity (GLUT-4, GLP-1, adiponectin). Thus, the results suggest that Lact. fermentum could act as potential probiotic for lifestyle-related disorders such as obesity, diabetes, and metabolic syndrome as both prophylactic and adjunct therapies.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Limosilactobacillus fermentum , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Inflamação/terapia , Insulina/sangue , Obesidade , Ratos , Estreptozocina
19.
Mol Ther ; 29(1): 149-161, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130311

RESUMO

Autoimmune destruction of pancreatic beta cells is the characteristic feature of type 1 diabetes mellitus. Consequently, both short- and intermediate-acting insulin analogs are under development to compensate for the lack of endogenous insulin gene expression. Basal insulin is continuously released at low levels in response to hepatic glucose output, while post-prandial insulin is secreted in response to hyperglycemia following a meal. As an alternative to multiple daily injections of insulin, glucose-regulated insulin gene expression by gene therapy is under development to better endure postprandial glucose excursions. Controlled transcription and translation of proinsulin, presence of glucose-sensing machinery, prohormone convertase expression, and a regulated secretory pathway are the key features unique to pancreatic beta cells. To take advantage of these hallmarks, we generated a new lentiviral vector (LentiINS) with an insulin promoter driving expression of the proinsulin encoding cDNA to sustain pancreatic beta-cell-specific insulin gene expression. Intraperitoneal delivery of HIV-based LentiINS resulted in the lowering of fasting plasma glucose, improved glucose tolerance and prevented weight loss in streptozoticin (STZ)-induced diabetic Wistar rats. However, the combinatorial use of LentiINS and anti-inflammatory lentiviral vector (LentiVIP) gene therapy was required to increase serum insulin to a level sufficient to suppress non-fasting plasma glucose and diabetes-related inflammation.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Terapia Genética , Vetores Genéticos/genética , Células Secretoras de Insulina/metabolismo , Insulina/genética , Lentivirus/genética , Animais , Biomarcadores , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Insulina/metabolismo , Ratos , Ratos Wistar , Resultado do Tratamento
20.
Vet Med Sci ; 7(2): 500-511, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277985

RESUMO

This study aimed to assess antihyperlipidemic, cardiac and antioxidant effects as well as mode of actions of Musa paradisiaca (M. paradisiaca) leaf and fruit peel hydroethanolic extracts in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. Experimental diabetes mellitus was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight), 15 min after intraperitoneal injection of NA (120 mg/kg body weight). NA/STZ-induced diabetic rats were orally supplemented with M. paradisiaca leaf and fruit peel hydroethanolic extracts in a dose of 100 mg/kg body weight/day for 28 days. The treatment of NA/STZ-induced diabetic rats with M. paradisiaca leaf and fruit peel extracts significantly decreased the elevated fasting and post-prandial serum glucose, total cholesterol, triglycerides, LDL-cholesterol and vLDL-cholesterol levels and significantly increased the lowered serum insulin level, liver glycogen content, serum HDL-cholesterol level, homeostasis model assessment-insulin resistance (HOMA-IS) and HOMA-ß cell function. The elevated cardiovascular risk indices in diabetic rats were significantly improved due to treatment with M. paradisiaca extracts. Concomitant with the increase in liver glycogen content, the glucose-6-phosphatase activity significantly decreased reflecting the decrease in hepatic glucose output. The heart function was potentially ameliorated as manifested by decrease in the elevated serum creatine kinase-MB, lactate dehydrogenase and aspartate aminotransferase activities after treatments of diabetic rats with M. paradisiaca extracts. The elevated liver lipid peroxidation and the decline in liver glutathione content and superoxide dismutase, glutathione peroxidase and glutathione-S-transferase activities were significantly reversed by treatments. Thus, it can be concluded that M. paradisiaca leaf and fruit peel hydroethanolic extracts may have antihyperlipidemic and cardioprotective potentials in NA/STZ-induced diabetic rats. These effects may be mediated via improvements in the glycemic state, ß-cell function, tissue insulin sensitivity, and antioxidant defense mechanism.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Índice Glicêmico/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Musa/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Frutas/química , Hipoglicemiantes/química , Masculino , Niacinamida/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Distribuição Aleatória , Ratos , Ratos Wistar , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA