Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Front Genet ; 15: 1464243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280099

RESUMO

Human SULT2B1gene is responsible for expressing SULT2B1a and SULT2B1b enzymes, which are phase II metabolizing enzymes known as pregnenolone and cholesterol sulfotransferase (SULT), respectively. They are expressed in several tissues and contribute to steroids and hydroxysteroids homeostasis. Genetic variation of the SULT2B1 is reported to be associated with various pathological conditions, including autosomal recessive ichthyosis, cardiovascular disease, and different types of cancers. Understanding the pathological impact of SULT2B1 genetic polymorphisms in the human body is crucial to incorporating these findings in evaluating clinical conditions or improving therapeutic efficacy. Therefore, this paper summarized the most relevant reported studies concerning SULT2B1 expression, tissue distribution, substrates, and reported genetic polymorphisms and their mechanisms in enzyme activity and pathological conditions.

2.
Genes Cancer ; 15: 41-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132498

RESUMO

BACKGROUND: In some breast cancers, altered estrogen-sulfotransferase (SULT1E1) and its inactivation by oxidative-stress modifies E2 levels. Parallelly, hypoxia-inducible tissue-damaging factors (HIF1α) are induced. The proteins/genes expressions of these factors were verified in human-breast-cancer tissues. SULT1E1 inducing-drugs combinations were tested for their possible protective effects. METHODS: Matrix-metalloproteases (MMP2/9) activity and SULT1E1-HIF1α protein/gene expression (Western-blot/RTPCR) were assessed in breast-cancers versus adjacent-tissues. Oxidant-stress neutralizer, chalcone (trans-1,3-diaryl-2-propen-1-ones) and SULT1E1-inducer pure dialyl-sulfide (garlic; Allium sativum) were tested to prevent cancer causing factors in rat, in-vitro and in-vivo. The antioxidant-enzymes SOD1/catalase/GPx/LDH and matrix-degenerating MMP2/9 activities were assessed (gel-zymogram). Histoarchitecture (HE-staining) and tissue SULT1E1-localization (immuno-histochemistry) were screened. Extensive statistical-analysis were performed. RESULTS: Human cancer-tissue expresses higher SULT1E1, HIF1α protein/mRNA and lower LDH activity. Increase of MMP2/9 activities commenced tissue damage. However, chalcone and DAS significantly induced SULT1E1 gene/protein, suppressed HIF1α expression, MMP2/9 activities in rat tissues. Correlation and group statistics of t-test suggest significant link of oxidative-stress (MDA) with SULT1E1 (p = 0.006), HIF1α (p = 0.006) protein-expression. The non-protein-thiols showed negative correlation (p = 0.001) with HIF1α. These proteins and SULT1E1-mRNA expressions were significantly higher in tumor (p < 0.05). Correlation data suggest, SULT1E1 is correlated with non-protein-thiols. CONCLUSIONS: Breast cancers associate with SULT1E1, HIF1α and MMPs deregulations. For the first time, we are revealing that advanced cancer tissue with elevated SULT1E1-protein may reactivate in a reducing-state initiated by chalcone, but remain dormant in an oxidative environment. Furthermore, increased SULT1E1 protein synthesis is caused by DAS-induced mRNA expression. The combined effects of the drugs might decrease MMPs and HIF1α expressions. Further studies are necessary.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39046919

RESUMO

Purpose: To investigate the association of genetic polymorphisms Gln192Arg and Leu55Met of Paraoxonase 1 (PON1) gene, and Arg213His of Sulfotransferase 1A1 (SUT1A1) gene with occurrence of breast cancer among young women living in Rio de Janeiro city. Methods: This is a hospital-based case-control study including 265 women aged 18-35 years, diagnosed with breast cancer at National Cancer Institute; and 277 controls in the same age group selected among women patients and companions of three general hospitals from Rio de Janeiro public health network. Polymorphisms genotyping was performed using the PCR-RFLP technique. Results: For PON1 gene, breast cancer women had a greater chance of being homozygote for Leu55Met polymorphism (ORadjusted = 1.42, 95% CI= 0.67-3.00, recessive model) and a lower chance of having at least one allele of Gln192Arg polymorphism (ORadjusted = 0.75, 95% CI = 0.50-1.13, dominant model), but without statistical significance. Accordingly, frequency of the haplotype Met55/Arg192 was lower among breast cancer women, but no statistically significant association was observed (ORadjusted = 0.85; 95% CI = 0.48-1.51). SULT1A1 His/His genotype was significantly associated with a protective effect for breast cancer (OR adjusted = 0.51, 95% CI = 0.28-0.91, recessive model). Conclusion: Arg213His polymorphism of SUT1A1 gene showed a protective effect against breast cancer among Brazilian young women. More studies with different designs are needed to understand the role of PON1 and SULT1A1 polymorphisms in breast cancer development in young Brazilian women.

4.
Front Chem ; 12: 1396105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974991

RESUMO

We previously reported on the interaction of 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ) with the Aryl hydrocarbon Receptor (AhR) and selective growth inhibition in breast cancer cell lines. We now report on a library of BBQ analogues with substituents on the phenyl and naphthyl rings for biological screening. Herein, we show that absence of the phenyl Cl of 10-Cl-BBQ to produce the simple BBQ molecule substantially enhanced the growth inhibitory effect with GI50 values of 0.001-2.1 µM in select breast cancer cell lines MCF-7, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, BT474 cells, while having modest effects of 2.1-7 µM in other cell lines including HT29, U87, SJ-G2, A2780, DU145, BE2-C, MIA, MDA-MB-231 or normal breast cells, MCF10A (3.2 µM). The most potent growth inhibitory effect of BBQ was observed in the triple negative cell line, MDA-MB-468 with a GI50 value of 0.001 µM, presenting a 3,200-fold greater response than in the normal MCF10A breast cells. Additions of Cl, CH3, CN to the phenyl ring and ring expansion from benzoimidazole to dihydroquinazoline hindered the growth inhibitory potency of the BBQ analogues by blocking potential sites of CYP1 oxidative metabolism, while addition of Cl or NO2 to the naphthyl rings restored potency. In a cell-based reporter assay all analogues induced 1.2 to 10-fold AhR transcription activation. Gene expression analysis confirmed the induction of CYP1 oxygenases by BBQ. The CYP1 inhibitor α-naphthoflavone, and the SULT1A1 inhibitor quercetin significantly reduced the growth inhibitory effect of BBQ, confirming the importance of both phase I and II metabolic activation for growth inhibition. Conventional molecular modelling/docking revealed no significant differences between the binding poses of the most and least active analogues. More detailed DFT analysis at the DSD-PBEP86/Def-TZVPP level of theory could not identify significant geometric or electronic changes which would account for this varied AhR activation. Generation of Fukui functions at the same level of theory showed that CYP1 metabolism will primarily occur at the phenyl head group of the analogues, and substituents within this ring lead to lower cytotoxicity.

5.
J Cosmet Dermatol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034734

RESUMO

BACKGROUND: Androgenetic alopecia (AGA) is common. While topical minoxidil remains the only FDA-approved therapeutic for AGA, its efficacy is limited in stimulating clinically significant hair regrowth over the longer term. Oral minoxidil, which is used off-label, is a promising alternative; however, its effectiveness and underlying mechanisms warrant further investigation. AIMS: To elucidate the site of action and infer the physiological mechanisms underlying therapeutic responses to oral minoxidil in patients with AGA. METHODS: Forty-one patients with AGA underwent 6 months of low-dose oral minoxidil treatment. Minoxidil sulfotransferase (SULT) activity was assayed in plucked scalp hair follicles. The primary outcome was hair growth after low-dose oral minoxidil treatment for a minimum of 6 months, and the secondary outcome was SULT activity in hair follicles. RESULTS: After 6 months of treatment, 26 (63.4%) patients experienced a clinical improvement in alopecia symptoms. The response rate was higher in men (19/26 [73.1%]) than in women (6/15 [40.0%]). Patients with low hair follicle SULT activity demonstrated a higher minoxidil response rate than those with high enzyme activity (85% vs. 43%, p = 0.009). CONCLUSIONS: Our findings indicate that low SULT activity within the hair follicles is associated with a favorable response to oral minoxidil therapy in patients with AGA. Further elucidation of the underlying mechanisms could significantly improve personalized therapeutic approaches through improved patient selection and the rational design of adjuvant treatments.

6.
J Obstet Gynaecol Res ; 50(8): 1334-1344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777329

RESUMO

BACKGROUND: Sulfotransferase family 2B member 1 (SULT2B1) has been reported to play oncogenic role in many types of cancers. Nevertheless, the role that SULT2B1 played in ovarian cancer (OC) and the hidden molecular mechanism is obscure. METHODS: Expression of SULT2B1 in OC was analyzed by GEPIA database. qRT-PCR and western blot (WB) was applied for the appraisement of SULT2B1 and Annexin A9 (ANXA9) in OC cell lines. The capabilities of cells to proliferate, migrate and invade were assessed with CCK-8 assay, wound healing assay, along with transwell assay. Cell apoptotic level was estimated utilizing flow cytometry. WB was employed for the evaluation of migration- and apoptosis-related proteins. Bioinformatic analysis and co-immunoprecipitation were used to predict and verify the combination of SULT2B1 and ANXA9. RESULTS: The data showed that SULT2B1 and ANXA9 were upregulated in OC cells. SULT2B1 depletion suppressed the proliferative, migrative, and invasive capabilities of SKOV3 cells but facilitated the cell apoptosis. SULT2B1-regulated ANXA9 expression and were proved to bind to ANXA9. Additionally, ANXA9 deficiency exhibited the same impacts on cell migrative, invasive capability and apoptotic level as SULT2B1 silencing. Moreover, ANXA9 overexpression reversed the inhibitory impacts of SULT2B1 silencing on the proliferative, migrative, invasive, and apoptotic capabilities of SKOV3 cells. CONCLUSION: In summary, SULT2B1 silencing repressed OC progression by targeting ANXA9.


Assuntos
Apoptose , Movimento Celular , Neoplasias Ovarianas , Sulfotransferases , Feminino , Humanos , Anexinas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Sulfotransferases/metabolismo , Sulfotransferases/genética
7.
Atherosclerosis ; 397: 117578, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38797615

RESUMO

BACKGROUND AND AIMS: High density lipoprotein (HDL) exerts an anti-atherosclerotic effect via reverse cholesterol transport (RCT). Several phases of RCT are transcriptionally controlled by Liver X receptors (Lxrs). Although macrophage Lxrs reportedly promote RCT, it is still uncertain whether hepatic Lxrs affect RCT in vivo. METHODS: To inhibit Lxr-dependent pathways in mouse livers, we performed hepatic overexpression of sulfotransferase family cytosolic 2B member 1 (Sult2b1) using adenoviral vector (Ad-Sult2b1). Ad-Sult2b1 or the control virus was intravenously injected into wild type mice and Lxrα/ß double knockout mice, under a normal or high-cholesterol diet. A macrophage RCT assay and an HDL kinetic study were performed. RESULTS: Hepatic Sult2b1 overexpression resulted in reduced expression of Lxr-target genes - ATP-binding cassette transporter G5/G8, cholesterol 7α hydroxylase and Lxrα itself - respectively reducing or increasing cholesterol levels in HDL and apolipoprotein B-containing lipoproteins (apoB-L). A macrophage RCT assay revealed that Sult2b1 overexpression inhibited fecal excretion of macrophage-derived 3H-cholesterol only under a high-cholesterol diet. In an HDL kinetic study, Ad-Sult2b1 promoted catabolism/hepatic uptake of HDL-derived cholesterol, thereby reducing fecal excretion. Finally, in Lxrα/ß double knockout mice, hepatic Sult2b1 overexpression increased apoB-L levels, but there were no differences in HDL levels or RCT compared to the control, indicating that Sult2b1-mediated effects on HDL/RCT and apoB-L were distinct: the former was Lxr-dependent, but not the latter. CONCLUSIONS: Hepatic Lxr inhibition negatively regulates circulating HDL levels and RCT by reducing Lxr-target gene expression.


Assuntos
Colesterol , Receptores X do Fígado , Fígado , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sulfotransferases , Animais , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Fígado/metabolismo , Transporte Biológico , Camundongos , Colesterol/metabolismo , Macrófagos/metabolismo , Sulfotransferases/metabolismo , Sulfotransferases/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Colesterol na Dieta , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Masculino , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas
8.
Ther Adv Cardiovasc Dis ; 18: 17539447241249886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801157

RESUMO

Atrial fibrillation (AF) accounts for 40% of all cardiac arrhythmias and is associated with a high risk of stroke and systemic thromboembolic complications. Dabigatran, rivaroxaban, apixaban, and edoxaban are direct oral anticoagulants (DOACs) that have been proven to prevent stroke in patients with non-valvular AF. This review summarizes the pharmacokinetics, pharmacodynamics, and drug interactions of DOACs, as well as new data from pharmacogenetic studies of these drugs. This review is aimed at analyzing the scientific literature on the gene polymorphisms involved in the metabolism of DOACs. We searched PubMed, Cochrane, Google Scholar, and CyberLeninka (Russian version) databases with keywords: 'dabigatran', 'apixaban', 'rivaroxaban', 'edoxaban', 'gene polymorphism', 'pharmacogenetics', 'ABCB1', 'CES1', 'SULT1A', 'ABCG2', and 'CYP3A4'. The articles referred for this review include (1) full-text articles; (2) study design with meta-analysis, an observational study in patients taking DOAC; and (3) data on the single-nucleotide polymorphisms and kinetic parameters of DOACs (plasma concentration), or a particular clinical outcome, published in English and Russian languages during the last 10 years. The ages of the patients ranged from 18 to 75 years. Out of 114 reviewed works, 24 were found eligible. As per the available pharmacogenomic data, polymorphisms affecting DOACs are different. This may aid in developing individual approaches to optimize DOAC pharmacotherapy to reduce the risk of hemorrhagic complications. However, large-scale population studies are required to determine the dosage of the new oral anticoagulants based on genotyping. Information on the genetic effects is limited owing to the lack of large-scale studies. Uncovering the mechanisms of the genetic basis of sensitivity to DOACs helps in developing personalized therapy based on patient-specific genetic variants and improves the efficacy and safety of DOACs in the general population.


Gene polymorphism as a cause of hemorrhagic complications in patients with non-valvular atrial fibrillation treated with oral vitamin K-independent anticoagulantsAtrial fibrillation (AF) accounts for 40% of all cardiac arrhythmias and is associated with a high risk of stroke and systemic thromboembolic complications. Dabigatran, rivaroxaban, apixaban, and edoxaban are direct oral anticoagulants (DOACs) that have been proven to prevent stroke in patients with non-valvular AF. This review summarizes the pharmacokinetics, pharmacodynamics, and drug interactions of DOACs, as well as new data from pharmacogenetic studies of these drugs.


Assuntos
Fibrilação Atrial , Hemorragia , Variantes Farmacogenômicos , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/diagnóstico , Administração Oral , Hemorragia/induzido quimicamente , Hemorragia/genética , Fatores de Risco , Anticoagulantes/efeitos adversos , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacocinética , Resultado do Tratamento , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/genética , Medição de Risco , Fenótipo , Polimorfismo de Nucleotídeo Único , Vitamina K/antagonistas & inibidores , Interações Medicamentosas
9.
Sci Rep ; 14(1): 8050, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580665

RESUMO

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Assuntos
Isoenzimas , Pregnenolona , Humanos , Isoenzimas/metabolismo , Escherichia coli/metabolismo , Sulfotransferases/metabolismo , Polimorfismo de Nucleotídeo Único
10.
PNAS Nexus ; 3(3): pgae097, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487162

RESUMO

Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,ß-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,ß-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,ß-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,ß-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.

11.
Crit Rev Toxicol ; 54(2): 92-122, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363552

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.


Assuntos
Bifenilos Policlorados , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Hidroxilação , Sulfatos/toxicidade , Sulfatos/metabolismo , Poluição Ambiental , Substâncias Perigosas
12.
Clin Transl Med ; 14(2): e1587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372484

RESUMO

Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.


Assuntos
Neoplasias do Colo , Metabolismo dos Lipídeos , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Sulfotransferases/genética , Sulfotransferases/metabolismo , Estearoil-CoA Dessaturase/metabolismo
13.
Cell Rep ; 43(3): 113716, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412094

RESUMO

Ovarian endometriosis is characterized by the growth of endometrial tissue within the ovary, causing infertility and chronic pain. However, its pathophysiology remains unclear. Utilizing high-precision single-cell RNA sequencing, we profile the normal, eutopic, and ectopic endometrium from 34 individuals across proliferative and secretory phases. We observe an increased proportion of ciliated cells in both eutopic and ectopic endometrium, characterized by a diminished expression of estrogen sulfotransferase, which likely confers apoptosis resistance. After translocating to ectopic lesions, endometrial epithelium upregulates nicotinamide N-methyltransferase expression that inhibits apoptosis by promoting deacetylation and subsequent nuclear exclusion of transcription factor forkhead box protein O1, thereby leading to the downregulation of the apoptotic gene BIM. Moreover, epithelial cells in ectopic lesions elevate HLA class II complex expression, which stimulates CD4+ T cells and consequently contributes to chronic inflammation. Altogether, our study provides a comprehensive atlas of ovarian endometriosis and highlights potential therapeutic targets for modulating apoptosis and inflammation.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/patologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Endométrio/metabolismo , Análise de Célula Única , Inflamação/patologia
14.
Biosci Biotechnol Biochem ; 88(4): 368-380, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271594

RESUMO

Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.


Assuntos
Fosfoadenosina Fosfossulfato , Sulfotransferases , Sulfotransferases/química , Citosol/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Sulfatos/metabolismo
15.
Res Sq ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961499

RESUMO

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.

16.
Methods Enzymol ; 689: 332-352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802577

RESUMO

Conjugation of steroids and sterol compounds with a sulfonate group is a major pathway in the regulation of their activity, synthesis and excretion. Three human cytosolic sulfotransferases are highly involved in the sulfonation of sterol compounds. SULT1E1 has a low nM affinity for estrogen sulfonation and also conjugates non-aromatic steroids with a significantly lower affinity. SULT2A1 is responsible for the high levels of fetal and adult dehydroepiandrosterone (DHEA) sulfate synthesis in the adrenal gland as well as many 3α and 3ß-hydroxysteroids and bile acids. SULT2B1b is responsible for the majority of cholesterol sulfation in tissues as well as conjugating 3ß-hydroxysteroids. Although there are multiple methods for assaying cytosolic SULT activity, two relatively simple, rapid and versatile assays for steroid sulfonation are described. The first method utilizes radiolabeled substrates and organic solvent extraction to isolate the radiolabeled product from the aqueous phase. The second assay utilizes 35S-3'-phosphoadenosine 5'-phosphosulfate (PAPS) to generate 35S-conjugated products that are resolved by thin layer chromatography. Both assays useful in situations requiring measurement of SULT activity in a timely manner.


Assuntos
Esteroides , Sulfotransferases , Adulto , Humanos , Hidroxiesteroides , Sulfotransferases/metabolismo , Esteróis
17.
Protein Pept Lett ; 30(10): 821-829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724676

RESUMO

Estrogen plays a key role in the development and progression of many malignant tumours, and the regulation of estrogen levels involves several metabolic pathways. Among these pathways, estrogen sulfotransferase (SULT1E1) is the enzyme with the most affinity for estrogen and is primarily responsible for catalysing the metabolic reaction of estrogen sulphation. Relevant studies have shown significant differences in the expression of SULT1E1 in different malignant tumours, suggesting that SULT1E1 plays a dual role in malignant tumours, both inhibiting the growth of malignant tumours and promoting their development. In addition, the expression level of SULT1E1 may be regulated by a variety of factors, which in turn affect the growth and therapeutic effects of malignant tumours. The aim of this paper is to review the mechanism of action of SULT1E1 in malignant tumours and the mechanisms that are regulated, in order to provide potential targets for the treatment of malignant tumour patients in the future and theoretical support for the realisation of more personalised and effective therapeutic regimens.


Assuntos
Estrogênios , Neoplasias , Humanos , Estrogênios/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
18.
Chem Biol Drug Des ; 102(5): 1014-1023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37487659

RESUMO

Human sulfotransferases 1A3 (SULT1A3) has received particular interest, due to their functions of catalyzing the sulfonation of numerous phenolic substrates, including bioactive endogenous molecules and therapeutic agents. However, the regulation of SULT1A3 expression and the underlying mechanism remain unclear. Here, we aimed to investigate the regulation effects of bile acid-activated farnesoid X receptor (FXR) on SULT1A3 expression, and to shed light on the mechanism thereof. Our results demonstrated that FXR agonists (CDCA and GW4064) significantly inhibit the expression of SULT1A3 at mRNA and protein levels. In addition, overexpression of FXR led to decrease in SULT1A3 expression and knockdown of FXR significantly induced the expression of SULT1A3 in protein and mRNA levels, confirming that FXR expression manifestly showed negative regulatory effect on basal SULT1A3 expression. Furthermore, a combination of luciferase reporter gene and CHIP assays showed that FXR repressed SULT1A3 transcription through direct binding to the region at base pair positions -664 to -654. In conclusion, this study for the first time confirmed FXR was a negative transcriptional regulator of human SULT1A3 enzyme.


Assuntos
Ácido Quenodesoxicólico , Receptores Citoplasmáticos e Nucleares , Humanos , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , RNA Mensageiro/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
19.
Cell Biochem Funct ; 41(4): 461-477, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37139830

RESUMO

The ultimate driving force, stress, promotes adaptability/evolution in proliferating organisms, transforming tumorigenic growth. Estradiol (E2) regulates both phenomena. In this study, bioinformatics-tools, site-directed-mutagenesis (human estrogen-sulfotransferase/hSULT1E1), HepG2 cells tested with N-acetyl-cysteine (NAC/thiol-inducer) or buthionine-sulfoxamine (BSO/thiol-depletory) were evaluated for hSULT1E1 (estradiol-sulphating/inactivating) functions. Reciprocal redox regulation of steroid sulfatase (STS, E2-desulfating/activating) results in the Cys-formylglycine transition by the formylglycine-forming enzyme (FGE). The enzyme sequences and structures were examined across the phylogeny. Motif/domain and the catalytic conserve sequences and protein-surface-topography (CASTp) were investigated. The E2 binding to SULT1E1 suggests that the conserved-catalytic-domain in this enzyme has critical Cysteine 83 at position. This is strongly supported by site-directed mutagenesis/HepG2-cell research. Molecular-docking and superimposition studies of E2 with the SULT1E1 of representative species and to STS reinforce this hypothesis. SULT1E1-STS are reciprocally activated in response to the cellular-redox-environment by the critical Cys of these two enzymes. The importance of E2 in organism/species proliferation and tissue tumorigenesis is highlighted.


Assuntos
Cisteína , Estrogênios , Humanos , Cisteína/metabolismo , Estradiol , Oxirredução , Mutagênese Sítio-Dirigida
20.
J Nutr ; 153(6): 1753-1761, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062485

RESUMO

BACKGROUND: More than 30% of reproductive-age women are obese or overweight. Obesity and exposure to a high-fat diet (HFD) detrimentally affect endometrial development and embryo implantation. We previously reported that time-restricted feeding (TRF) improved ovarian follicular development, but whether and how TRF modulates embryo implantation are poorly understood. OBJECTIVE: We investigated the effect of TRF on embryo implantation. METHODS: In TRF group, mice had 10 h of food free access from 9 pm to 7 am, and fed a normal diet or a HFD. Tail vein injection of Chicago blue dye was used to examine embryo implantation sites at day 5.5 (D5.5) of pregnancy. Serum collected at D0.5 and D4.5 of pregnancy was used to examine the level of estradiol (E2) and progesterone. Uterine estrogen receptor (ER) and progesterone receptor levels and their targeted aquaporins (AQPs) were measured. LC-MS was used to analyze bile acid (BA) composition, and primary hepatocytes were used to test the effects of BA on the expression level of SULT1E1, a key enzyme in estrogen inactivation and elimination. RESULTS: We found that TRF prevented HFD-induced embryo loss and alleviated the defect in luminal closure on D4.5 of pregnancy. The cyclic changes of E2 level were lost in mice fed ad libitum but not in TRF mice on the HFD. The HFD increased ER-α expression and transcriptional activity, which induced AQP3 and AQP5 expression on D4.5 of pregnancy. TRF prevented the negative effect of the HFD on uterine luminal closure. Furthermore, in vitro and in vivo results showed that BA suppressed estrogen degradation by activating liver SULT1E1 expression. CONCLUSIONS: Our findings demonstrated that TRF prevented HFD-induced defects in luminal closure, thereby improving embryonic implantation, and provide novel insights into the effects of dietary intervention on obesity and associated infertility.


Assuntos
Dieta Hiperlipídica , Receptor alfa de Estrogênio , Gravidez , Camundongos , Feminino , Animais , Receptor alfa de Estrogênio/genética , Obesidade , Implantação do Embrião/fisiologia , Estrogênios , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA