Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 9(2): 622-630, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320750

RESUMO

Metal-organic frameworks (MOFs), with their well-defined and highly flexible nanoporous architectures, provide a material platform ideal for fabricating sensors. We demonstrate that the efficacy and specificity of detecting and differentiating volatile organic compounds (VOCs) can be significantly enhanced using a range of slightly varied MOFs. These variations are obtained via postsynthetic modification (PSM) of a primary framework. We alter the original MOF's guest adsorption affinities by incorporating functional groups into the MOF linkers, which yields subtle changes in responses. These responses are subsequently evaluated by using machine learning (ML) techniques. Under severe conditions, such as high humidity and acidic environments, sensor stability and lifespan are of utmost importance. The UiO-66-X MOFs demonstrate the necessary durability in acidic, neutral, and basic environments with pH values ranging from 2 to 11, thus surpassing most other similar materials. The UiO-66-NH2 thin films were deposited on quartz-crystal microbalance (QCM) sensors in a high-temperature QCM liquid cell using a layer-by-layer pump method. Three different, highly stable surface-anchored MOFs (SURMOFs) of UiO-66-X obtained via the PSM approach (X: NH2, Cl, and N3) were employed to fabricate arrays suitable for electronic nose applications. These fabricated sensors were tested for their capability to distinguish between eight VOCs. Data from the sensor array were processed using three distinct ML techniques: linear discriminant (LDA), nearest neighbor (k-NN), and neural network analysis methods. The discrimination accuracies achieved were nearly 100% at high concentrations and over 95% at lower concentrations (50-100 ppm).


Assuntos
Estruturas Metalorgânicas , Ácidos Ftálicos , Compostos Orgânicos Voláteis , Adsorção
2.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985688

RESUMO

Gas-phase infiltration of the carbonylchloridogold(I), Au(CO)Cl precursor into the pores of HKUST-1 ([Cu3(BTC)2(H2O)2], Cu-BTC) SURMOFs (surface-mounted metal-organic frameworks; BTC = benzene-1,3,5-tricarboxylate) leads to Au(CO)Cl decomposition within the MOF through hydrolysis with the aqua ligands on Cu. Small Aux clusters with an average atom number of x ≈ 5 are formed in the medium-sized pores of the HKUST-1 matrix. These gold nanoclusters are homogeneously distributed and crystallographically ordered, which was supported by simulations of the powder X-ray diffractometric characterization. Aux@HKUST-1 was further characterized by scanning electron microscopy (SEM) and infrared reflection absorption (IRRA) as well as Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).

3.
ACS Nano ; 17(6): 6121-6130, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36877629

RESUMO

Fabrication of metal-organic framework (MOF) thin films rigidly anchored on suitable substrates is a crucial prerequisite for the integration of these porous hybrid materials into electronic and optical devices. Thus, far, the structural variety for MOF thin films available through layer-by-layer deposition was limited, as the preparation of those surface-anchored metal-organic frameworks (SURMOFs) has several requirements: mild conditions, low temperatures, day-long reaction times, and nonaggressive solvents. We herein present a fast method for the preparation of the MIL SURMOF on Au-surfaces under rather harsh conditions: Using a dynamic layer-by-layer synthesis for MIL-68(In), thin films of adjustable thickness between 50 and 2000 nm could be deposited within only 60 min. The MIL-68(In) thin film growth was monitored in situ using a quartz crystal microbalance. In-plane X-ray diffraction revealed oriented MIL-68(In) growth with the pore-channels of this interesting MOF aligned parallel to the support. Scanning electron microscopy data demonstrated an extraordinarily low roughness of the MIL-68(In) thin films. Mechanical properties and lateral homogeneity of the layer were probed through nanoindentation. These thin films showed extremely high optical quality. By applying a poly(methyl methacrylate) layer and further depositing an Au-mirror to the top, a MOF optical cavity was fabricated that can be used as a Fabry-Perot interferometer. The MIL-68(In)-based cavity showed a series of sharp resonances in the ultraviolet-visible regime. Changes in the refractive index of MIL-68(In) caused by exposure to volatile compounds led to pronounced position shifts of the resonances. Thus, these cavities are well suited to be used as optical read-out sensors.

4.
Membranes (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34677501

RESUMO

The quality assurance of hydrogen fuel for mobile applications is assessed by the guidelines and directives given in the European and international standards. However, the presence of impurities in the hydrogen fuel, in particular nitrogen, water, and oxygen, is experienced in several refueling stations. Within this work, metal-organic framework (MOF)-based membranes are investigated as a fine-purification stage of the hydrogen fuel. Three H2/N2 concentrations have been used to analyze the separation factor of UiO-66-NH2 membranes prepared using the layer-by-layer (LBL) and the one-pot (OP) synthesis methods. It is shown that the separation factor for an equimolar ratio is 14.4% higher for the LBL sample compared to the OP membrane, suggesting a higher orientation and continuity of the LBL surface-supported metal-organic framework (SURMOF). Using an equimolar ratio of H2/N2, it is shown that selective separation of hydrogen over nitrogen occurs with a separation factor of 3.02 and 2.64 for the SURMOF and MOF membrane, respectively. To the best of our knowledge, this is the highest reported performance for a single-phase UiO-66-NH2 membrane. For higher hydrogen concentrations, the separation factor decreases due to reduced interactions between pore walls and N2 molecules.

5.
ACS Appl Mater Interfaces ; 13(36): 43777-43786, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463483

RESUMO

The fabrication of integrated circuits with ever smaller (sub-10 nm) features poses fundamental challenges in chemistry and materials science. As smaller nanostructures are fabricated, thinner layers of materials are required, and surfaces and interfaces gain a more important role in the formation of nanopatterns. We present a new bottom-up approach in which we use the high optical resolution offered by extreme ultraviolet (EUV) lithography to print patterns on self-assembled monolayers (SAMs). Upon radiation, low-energy electrons induce chemical changes in the SAM so that the projected image is transferred to the substrate surface. We use the chemical differences between exposed and unexposed regions to promote a selective growth of hybrid structures that can act as an etch-resistant layer for further pattern transfer or can be used as functional nanostructures. The EUV doses required to promote selective growth on exposed areas are close to industrial requirements. Furthermore, this method allows for the independent tuning of different steps in the EUV lithography process (photo-induced chemistry, spatially resolved chemical contrast, and formation of nanopatterns), an advantage over current resists, in which the same material plays all roles.

6.
Small ; 17(35): e2101475, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34288416

RESUMO

The advances of surface-supported metal-organic framework (SURMOF) thin-film synthesis have provided a novel strategy for effectively integrating metal-organic framework (MOF) structures into electronic devices. The considerable potential of SURMOFs for electronics results from their low cost, high versatility, and good mechanical flexibility. Here, the first observation of room-temperature negative differential resistance (NDR) in SURMOF vertical heterojunctions is reported. By employing the rolled-up nanomembrane approach, highly porous sub-15 nm thick HKUST-1 films are integrated into a functional device. The NDR is tailored by precisely controlling the relative humidity (RH) around the device and the applied electric field. The peak-to-valley current ratio (PVCR) of about two is obtained for low voltages (<2 V). A transition from a metastable state to a field emission-like tunneling is responsible for the NDR effect. The results are interpreted through band diagram analysis, density functional theory (DFT) calculations, and ab initio molecular dynamics simulations for quasisaturated water conditions. Furthermore, a low-voltage ternary inverter as a multivalued logic (MVL) application is demonstrated. These findings point out new advances in employing unprecedented physical effects in SURMOF heterojunctions, projecting these hybrid structures toward the future generation of scalable functional devices.

7.
Membranes (Basel) ; 11(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804254

RESUMO

In the context of thin film nanotechnologies, metal-organic frameworks (MOFs) are currently intensively explored in the context of both, novel applications and as alternatives to existing materials. When it comes to applications under relatively harsh conditions, in several cases it has been noticed that the stability of MOF thin films deviates from the corresponding standard, powdery form of MOFs. Here, we subjected SURMOFs, surface-anchored MOF thin films, fabricated using layer-by layer methods, to a thorough characterization after exposure to different harsh aqueous environments. The stability of three prototypal SURMOFs, HKUST-1, ZIF-8, and UiO-66-NH2 was systematically investigated in acidic, neutral, and basic environments using X-ray diffraction and electron microscopy. While HKUST-1 films were rather unstable in aqueous media, ZIF-8 SURMOFs were preserved in alkaline environments when exposed for short periods of time, but in apparent contrast to results reported in the literature for the corresponding bulk powders- not stable in neutral and acidic environments. UiO-66-NH2 SURMOFs were found to be stable over a large window of pH values.

8.
Angew Chem Int Ed Engl ; 60(3): 1620-1624, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33007124

RESUMO

Despite technological advancements, probing gas-solid interfaces at the nanoscale is still a formidable challenge. New nano-spectroscopic methods are needed to understand the guest-host interactions of functional materials during gas sorption, separation, and conversion. Herein, we introduce in situ Photoinduced Force Microscopy (PiFM) to evidence site-specific interaction between Metal-Organic Frameworks (MOFs) and water. To this end, we developed amphiphilic Surface-anchored MOF (SURMOF) model systems using self-assembly for the side-by-side hetero-growth of nanodomains of hydrophilic HKUST-1 and hydrophobic ZIF-8. PiFM was used to probe local uptake kinetics and to show D2 O sorption isotherms on (defective) HKUST-1 paddlewheels. By monitoring defect vibrations, we visualized in real-time the saturation of existing defects and the creation of D2 O-induced defects. This work shows the potential of in situ PiFM to unravel gas sorption mechanisms and map active sites on functional (MOF) materials.

9.
ACS Appl Mater Interfaces ; 12(45): 50784-50792, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33136357

RESUMO

We demonstrate growth control of Cu-based metal-organic framework (MOF) (HKUST-1) thin films assembled by the layer-by-layer technique on polymer films. The crystallinity and crystal face of MOF thin films were found to be controlled by reaction sites in polymer films such as hydroxy groups (the (100) crystal face), carbonyl groups (the (111) crystal face), and amide groups (the (100) crystal face). The HKUST-1 film growth amount is highly correlated with the polar component of the surface free energy, indicating that polymer sites, which afford hydrogen and coordination bonding, are important for the initial adsorption of Cu complexes. We also demonstrated a resistive switching device application using an HKUST-1 thin film on the poly(vinyl alcohol) dip-coated film at 40 deposition cycles, which suggests that the HKUST-1 thin film serves as a resistive switching layer with good film formation capability.

10.
Molecules ; 25(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942666

RESUMO

In recent years, the photophysical properties of crystalline metal-organic frameworks (MOFs) have become increasingly relevant for their potential application in light-emitting devices, photovoltaics, nonlinear optics and sensing. The availability of high-quality experimental data for such systems makes them ideally suited for a validation of quantum mechanical simulations, aiming at an in-depth atomistic understanding of photophysical phenomena. Here we present a computational DFT study of the absorption and emission characteristics of a Zn-based surface-anchored metal-organic framework (Zn-SURMOF-2) containing anthracenedibenzoic acid (ADB) as linker. Combining band-structure and cluster-based simulations on ADB chromophores in various conformations and aggregation states, we are able to provide a detailed explanation of the experimentally observed photophysical properties of Zn-ADB SURMOF-2: The unexpected (weak) red-shift of the absorption maxima upon incorporating ADB chromophores into SURMOF-2 can be explained by a combination of excitonic coupling effects with conformational changes of the chromophores already in their ground state. As far as the unusually large red-shift of the emission of Zn-ADB SURMOF-2 is concerned, based on our simulations, we attribute it to a modification of the exciton coupling compared to conventional H-aggregates, which results from a relative slip of the centers of neighboring chromophores upon incorporation in Zn-ADB SURMOF-2.


Assuntos
Estruturas Metalorgânicas/química , Antracenos/química , Teoria da Densidade Funcional , Dimerização , Conformação Molecular , Solventes/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA