RESUMO
Vagus nerve stimulation (VNS) is the subject of exploration as an adjunct treatment for neurological disorders such as epilepsy, chronic migraine, pain, and depression. A non-invasive form of VNS is transcutaneous auricular VNS (taVNS). Combining animal models and positron emission tomography (PET) may lead to a better understanding of the elusive mechanisms of taVNS. We evaluated the acute effect of electrical stimulation of the left vagus nerve via the ear on brain synaptic vesicle glycoprotein 2A (SV2A) as a measure of presynaptic density and glucose metabolism in naïve rats. Female Sprague-Dawley rats were imaged with [11C]UCB-J (n = 11) or [18F]fluorodeoxyglucose ([18F]FDG) PET (n = 13) on two separate days, (1) at baseline, and (2) after acute unilateral left taVNS or sham stimulation (30 min). We calculated the regional volume of distribution (VT) for [11C]UCB-J and standard uptake values (SUV) for [18F]FDG. We observed regional reductions of [11C]UCB-J binding in response to taVNS ranging from 36% to 59%. The changes in taVNS compared to baseline were significantly larger than those induced by sham stimulation. The differences were observed bilaterally in the frontal cortex, striatum, and midbrain. The [18F]FDG PET uptake remained unchanged following acute taVNS or sham stimulation compared to baseline values. This proof-of-concept study shows for the first time that acute taVNS for 30 min can modulate in vivo synaptic SV2A density in cortical and subcortical regions of healthy rats. Preclinical disease models and PET ligands of different targets can be a powerful combination to assess the therapeutic potential of taVNS.
RESUMO
Background: The pathological effects of amyloid ß oligomers (Aßo) may be mediated through the metabotropic glutamate receptor subtype 5 (mGluR5), leading to synaptic loss in Alzheimer's disease (AD). Positron emission tomography (PET) studies of mGluR5 using [18F]FPEB indicate a reduction of receptor binding that is focused in the medial temporal lobe in AD. Synaptic loss due to AD measured through synaptic vesicle glycoprotein 2A (SV2A) quantification with [11C]UCB-J PET is also focused in the medial temporal lobe, but with clear widespread reductions is commonly AD-affected neocortical regions. In this study, we used [18F]FPEB and [11C]UCB-J PET to investigate the relationship between mGluR5 and synaptic density in early AD. Methods: Fifteen amyloid positive participants with early AD and 12 amyloid negative, cognitively normal (CN) participants underwent PET scans with both [18F]FPEB to measure mGluR5 and [11C]UCB-J to measure synaptic density. Parametric DVR images using equilibrium methods were generated from dynamic. For [18F]FPEB PET, DVR was calculated using equilibrium methods and a cerebellum reference region. For [11C]UCB-J PET, DVR was calculated with a simplified reference tissue model - 2 and a whole cerebellum reference region.. Result: A strong positive correlation between mGluR5 and synaptic density was present in the hippocampus for participants with AD (r = 0.81, p < 0.001) and in the CN group (r = 0.74, p = 0.005). In the entorhinal cortex, there was a strong positive correlation between mGluR5 and synaptic in the AD group (r = 0.85, p <0.001), but a weaker non-significant correlation in the CN group (r = 0.36, p = 0.245). Exploratory analyses within and between other brain regions suggested significant positive correlations between mGluR5 in the medial temporal lobe and synaptic density in a broader set of commonly AD-affected regions. Conclusion: Medial temporal loss of mGluR5 in AD is associated with synaptic loss in both medial temporal regions and more broadly in association cortical regions, indicating that mGluR5 mediated Aßo toxicity may lead to early synaptic loss more broadly in AD-affected networks. In CN individuals, an isolated strong association between lower mGluR5 and lower synaptic density may indicate non-AD related synaptic loss.
RESUMO
Synaptic dysfunction and loss are central to neurodegenerative diseases and correlate with cognitive decline. Synaptic Vesicle Protein 2A (SV2A) is a promising PET-imaging target for assessing synaptic density in vivo, but comprehensive mapping in the human brain is needed to validate its biomarker potential. This study used quantitative immunohistochemistry and Western blotting to map SV2A and synaptophysin (SYP) densities across six cortical regions in healthy controls and patients with early-onset Alzheimer's disease (EOAD), late-onset Alzheimer's disease (LOAD), progressive supranuclear palsy (PSP), and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-GRN). We identified region in SV2A density among controls and observed disease- and region-specific reductions, with the most severe in FTLD-GRN (up to 59.5%) and EOAD. EOAD showed a 49% reduction in the middle frontal gyrus (MFG), while LOAD had over 30% declines in the inferior frontal gyrus (IFG) and hippocampus (CA1). In PSP, smaller but significant reductions were noted in the hippocampal formation, with the inferior temporal gyrus (ITG) relatively unaffected. A strong positive correlation between SV2A and SYP densities confirmed SV2A's reliability as a synaptic integrity marker. This study supports the use of SV2A PET imaging for early diagnosis and monitoring of neurodegenerative diseases, providing essential data for interpreting in vivo PET results. Further research should explore SV2A as a therapeutic target and validate these findings in larger, longitudinal studies.
Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Tomografia por Emissão de Pósitrons , Sinaptofisina , Humanos , Sinaptofisina/metabolismo , Idoso , Feminino , Tomografia por Emissão de Pósitrons/métodos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Idoso de 80 Anos ou mais , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologiaRESUMO
BACKGROUND: A novel positron emission tomography (PET) imaging tracer, [18F] SynVesT-1, targeting synaptic vesicle glycoprotein 2 (SV2A), has been developed to meet clinical demand. Utilizing the Trasis AllinOne-36 (AIO) module, we've automated synthesis to Good Manufacturing Practice (GMP) standards, ensuring sterile, pyrogen-free production. The fully GMP-compliant robust synthesis of [18F] SynVesT-1 boosting reliability and introducing a significant degree of simplicity and its comprehensive validation for routine human use. RESULTS: [18F] SynVesT-1 was synthesized by small modifications to the original [18F] SynVesT-1 synthesis protocol to better fit AIO module using an in-house designed cassette and sequence. With a relatively small precursor load of 5 mg, [18F] SynVesT-1 was obtained with consistently high radiochemical yields (RCY) of 20.6 ± 1.2% (the decay-corrected RCY, n = 3) at end of synthesis. Each of the final formulated batches demonstrated radiochemical purity (RCP) and enantiomeric purity surpassing 99%. The entire synthesis process was completed within a timeframe of 80 min (75 ± 3.1 min, n = 3), saves 11 min compared to reported GMP automated synthesis procedures. The in-human PET imaging of total body PET/CT and time-of-flight (TOF) PET/MR showed that [18F] SynVesT-1 is an excellent tracer for SV2A. It is advantageous for decentralized promotion and application in multi-center studies. CONCLUSION: The use of AIO synthesizer maintains high production yields and increases reliability, reduces production time and allows rapid training of production staff. Besides, the as-prepared [18F] SynVesT-1 displays excellent in vivo binding properties in humans and holds great potential for the imaging and quantification of synaptic density in vivo.
RESUMO
Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.
Assuntos
Endocitose , Hipocampo , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Vesículas Sinápticas , Sinaptotagmina I , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Endocitose/fisiologia , Animais , Ratos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Hipocampo/metabolismo , Neurônios/metabolismo , Membrana Celular/metabolismo , Células CultivadasRESUMO
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
RESUMO
Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.
Assuntos
Encéfalo , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Tomografia por Emissão de Pósitrons , Sinapses , Humanos , Sinapses/metabolismo , Sinapses/fisiologia , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiologia , Adulto , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Atlas como Assunto , Adulto Jovem , Autorradiografia/métodos , IdosoRESUMO
BACKGROUND: In preclinical studies, the positron emission tomography (PET) imaging with [11C]UCB-A provided promising results for imaging synaptic vesicle protein 2A (SV2A) as a proxy for synaptic density. This paper reports the first-in-human [11C]UCB-A PET study to characterise its kinetics in healthy subjects and further evaluate SV2A-specific binding. RESULTS: Twelve healthy subjects underwent 90-min baseline [11C]UCB-A scans with PET/MRI, with two subjects participating in an additional blocking scan with the same scanning procedure after a single dose of levetiracetam (1500 mg). Our results indicated abundant [11C]UCB-A brain uptake across all cortical regions, with slow elimination. Kinetic modelling of [11C]UCB-A PET using various compartment models suggested that the irreversible two-tissue compartment model best describes the kinetics of the radioactive tracer. Accordingly, the Patlak graphical analysis was used to simplify the analysis. The estimated SV2A occupancy determined by the Lassen plot was around 66%. Significant specific binding at baseline and comparable binding reduction as grey matter precludes the use of centrum semiovale as reference tissue. CONCLUSIONS: [11C]UCB-A PET imaging enables quantifying SV2A in vivo. However, its slow kinetics require a long scan duration, which is impractical with the short half-life of carbon-11. Consequently, the slow kinetics and complicated quantification methods may restrict its use in humans.
RESUMO
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
RESUMO
One third of patients with epilepsy will continue to have uncontrolled seizures despite treatment with antiseizure medications (ASMs). There is therefore a need to develop novel ASMs. Brivaracetam (BRV) is an ASM that was developed in a major drug discovery program aimed at identifying selective, high-affinity synaptic vesicle protein 2A (SV2A) ligands, the target molecule of levetiracetam. BRV binds to SV2A with 15- to 30-fold higher affinity and greater selectivity than levetiracetam. BRV has broad-spectrum antiseizure activity in animal models of epilepsy, a favorable pharmacokinetic profile, few clinically relevant drug-drug interactions, and rapid brain penetration. BRV is available in oral and intravenous formulations and can be initiated at target dose without titration. Efficacy and safety of adjunctive BRV (50-200 mg/day) treatment of focal-onset seizures was demonstrated in three pivotal phase III trials (NCT00490035/NCT00464269/NCT01261325), including in patients who had previously failed levetiracetam. Efficacy and safety of adjunctive BRV were also demonstrated in adult Asian patients with focal-onset seizures (NCT03083665). In several open-label trials (NCT00150800/NCT00175916/NCT01339559), long-term safety and tolerability of adjunctive BRV was established, with efficacy maintained for up to 14 years, with high retention rates. Evidence from daily clinical practice highlights BRV effectiveness and tolerability in specific epilepsy patient populations with high unmet needs: the elderly (≥ 65 years of age), children (< 16 years of age), patients with cognitive impairment, patients with psychiatric comorbid conditions, and patients with acquired epilepsy of specific etiologies (post-stroke epilepsy/brain tumor related epilepsy/traumatic brain injury-related epilepsy). Here, we review the preclinical profile and clinical benefits of BRV from pivotal trials and recently published evidence from daily clinical practice.
One in three people with epilepsy continue to have seizures despite treatment. Brivaracetam is a medicine used to treat seizures in people with epilepsy. It binds to a protein in the brain (synaptic vesicle protein 2A) and is effective in many different animal models of epilepsy. Brivaracetam enters the brain quickly. It has few interactions with other medicines, which is important because people with epilepsy may be taking additional medicines for epilepsy or other conditions. Brivaracetam is available as tablets, oral solution, and solution for intravenous injection, can be started at the recommended target dose, and is easy to use. In three phase III trials, people with uncontrolled focal-onset seizures taking brivaracetam 50200 mg each day had fewer seizures than people taking a placebo. Brivaracetam was tolerated well. It also worked well in many people who had previously not responded to antiseizure medications. The efficacy of brivaracetam treatment is maintained for up to 14 years. Brivaracetam treatment reduces seizures in the elderly (≥ 65 years old), in children (< 16 years old), in people with cognitive or learning disabilities, in people with additional psychiatric conditions, and in people with different causes of epilepsy (post-stroke epilepsy, brain-tumor related epilepsy, and traumatic brain injury-related epilepsy). Here, we review brivaracetam characteristics and the results when people with epilepsy received brivaracetam in key clinical trials and real-world studies in daily clinical practice.
Assuntos
Anticonvulsivantes , Epilepsia , Pirrolidinonas , Humanos , Pirrolidinonas/uso terapêutico , Pirrolidinonas/administração & dosagem , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/administração & dosagem , Epilepsia/tratamento farmacológico , Animais , Criança , Resultado do Tratamento , Avaliação Pré-Clínica de Medicamentos , AdultoRESUMO
BACKGROUND: Previous studies have demonstrated that early intervention was the best plan to inhibit the progression of Alzheimer's disease (AD), which relied on the discovery of early diagnostic biomarkers. In this study, synaptic vesicle glycoprotein 2 A (SV2A) was examined to improve the early diagnostic efficiency in AD. METHODS: In this study, biomarker testing was performed through the single-molecule array (Simoa). A total of 121 subjects including cognitively unimpaired controls, amnestic mild cognitive impairment (aMCI), AD and other types of dementia underwent cerebrospinal fluid (CSF) SV2A testing; 430 subjects including health controls, aMCI, AD and other types of dementia underwent serum SV2A, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and p-tau217 testing; 92 subjects including aMCI and AD underwent both CSF SV2A and serum SV2A testing; 115 cognitively unimpaired subjects including APOE ε4 carriers and APOE ε4 non-carriers were tested for serum SV2A, GFAP, NfL and p-tau217. Then, the efficacy of SV2A for the early diagnosis of AD and its ability to identify those at high risk of AD from a cognitively unimpaired population were further analyzed. RESULTS: Both CSF and serum SV2A significantly and positively correlated with cognitive performance in patients with AD, and their levels gradually decreased with the progression of AD. Serum SV2A demonstrated excellent diagnostic efficacy for aMCI, with a sensitivity of 97.8%, which was significantly higher than those of NfL, GFAP, and p-tau217. The SV2A-positive rates ranged from 92.86 to 100% in aMCI cases that were negative for the above three biomarkers. Importantly, of all the biomarkers tested, serum SV2A had the highest positivity rate (81.82%) in individuals at risk for AD. CONCLUSIONS: Serum SV2A was demonstrated to be a novel and ideal biomarker for the early diagnosis of AD, which can effectively distinguish those at high risk of AD in cognitively unimpaired populations.
Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Apolipoproteína E4 , Biomarcadores , Diagnóstico Precoce , Glicoproteínas , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Glicoproteínas de Membrana/líquido cefalorraquidiano , Glicoproteínas de Membrana/química , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/químicaRESUMO
Objective: Individual differences were observed in the clinical efficacy of Botulinum toxin A (BoNT-A) in the treatment of the primary Meige syndrome. Our study aimed to explore the potential associations between the clinical efficacy of BoNT-A in the treatment of the primary Meige syndrome and variants of SNAP25, SV2C and ST3GAL2, which are involving in the translocation of the BoNT-A in vivo. Methods: Patients with the primary Meige syndrome treated with BoNT-A were enrolled. Clinical efficacy was evaluated by the maximum improvement rate of motor symptoms and the duration of efficacy. Variants of SNAP25, SV2C and ST3GAL2 were obtained by Sanger sequencing. Another cohort diagnosed with primary cervical dystonia was also enrolled in the replication stage. Results: Among the 104 primary Meige syndrome patients, 80 patients (76.9%) had a good efficacy (the maximum improvement rate of motor symptoms ≥30%) and 24 (23. 1%) had a poor (the maximum improvement rate of motor symptoms <30%). As to the duration of efficacy, 52 patients (50.0%) had a long duration of efficacy (≥4 months), and 52 (50.0%) had a short (<4 months). In terms of primary Meige syndrome, SNAP25 rs6104571 was found associating with the maximum improvement rate of motor symptoms (Genotype: P = 0.02, OR = 0.26; Allele: P = 0.013, OR = 0.29), and SV2C rs31244 was found associating with the duration of efficacy (Genotype: P = 0.024, OR = 0.13; Allele: P = 0.012, OR = 0.13). Besides, we also conducted the association analyses between the variants and BoNT-A-related adverse reactions. Although, there was no statistical difference between the allele of SV2C rs31244 and BoNT-A-related adverse reactions, there was a trend (P = 0.077, OR = 2.56). In the replication stage, we included 39 patients with primary cervical dystonia to further expanding the samples' size. Among the 39 primary cervical dystonia patients, 25 patients (64.1%) had a good efficacy (the maximum improvement rate of motor symptoms ≥50%) and 14 (35.9%) had a poor (the maximum improvement rate of motor symptoms <50%). As to the duration of efficacy, 32 patients (82.1%) had a long duration of efficacy (≥6 months), and 7 (17.9%) had a short (<6 months). Integrating primary Meige syndrome and primary cervical dystonia, SV2C rs31244 was still found associating with the duration of efficacy (Genotype: P = 0.002, OR = 0. 23; Allele: P = 0.001, OR = 0. 25). Conclusion: In our study, SNAP25 rs6104571 was associated with the maximum improvement rate of motor symptoms in patients with primary Meige syndrome treated with BoNT-A, and patients carrying this variant had a lower improvement rate of motor symptoms. SV2C rs31244 was associated with duration of treatment in patients with primary Meige syndrome treated with BoNT-A and patients carrying this variant had a shorter duration of treatment. Patients with primary Meige syndrome carrying SV2C rs31244 G allele have an increase likelihood of BoNT-A-related adverse reactions. Involving 39 patients with primary cervical dystonia, the results further verify that SV2C rs31244 was associated with duration of treatment and patients carrying this variant had a shorter duration of treatment.
RESUMO
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.
Assuntos
Dopamina , Neurônios Dopaminérgicos , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Vesículas Sinápticas , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos dos fármacosRESUMO
Several therapeutics and biomarkers that target Alzheimer's disease (AD) are under development. Our clinical positron emission tomography (PET) research programs are interested in six radiopharmaceuticals to image patients with AD and related dementias, specifically [11C]UCB-J and [18F]SynVesT-1 for synaptic vesicle glycoprotein 2A as a marker of synaptic density, two vesicular acetylcholine transporter PET radiotracers: [18F]FEOBV and [18F]VAT, as well as the transmembrane AMPA receptor regulatory protein (TARP)-γ8 tracer, [18F]JNJ-64511070, and the muscarinic acetylcholine receptor (mAChR) M4 tracer [11C]MK-6884. The goal of this study was to compare all six radiotracers (labeled with tritium or 18F) by measuring their density variability in pathologically diagnosed cases of AD, mild cognitive impairment (MCI) and normal healthy volunteer (NHV) human brains, using thin-section in vitro autoradiography (ARG). Region of interest analysis was used to quantify radioligand binding density and determine whether the radioligands provide a signal-to-noise ratio optimal for showing changes in binding. Our preliminary study confirmed that all six radiotracers show specific binding in MCI and AD. An expected decrease in their respective target density in human AD hippocampus tissues compared to NHV was observed with [3H]UCB-J, [3H]SynVesT-1, [3H]JNJ-64511070, and [3H]MK-6884. This preliminary study will be used to guide human PET imaging of SV2A, TARP-γ8 and the mAChR M4 subtype for imaging in AD and related dementias.
RESUMO
PURPOSE: Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-ß, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS: Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-ß), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS: Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION: These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.
Assuntos
Compostos de Anilina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Etilenoglicóis , Radioisótopos de Flúor , Piridinas , Pirrolidinas , Ratos , Animais , Flumazenil/metabolismo , Receptores de GABA-A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Vesículas Sinápticas/metabolismo , Proteômica , Ratos Zucker , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
INTRODUCTION: Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS: Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION: We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS: Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Vesículas Sinápticas/metabolismo , Cerebelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
Our study focused on human brain transcriptomes and the genetic risks of cigarettes per day (CPD) to investigate the neurogenetic mechanisms of individual variation in nicotine use severity. We constructed whole-brain and intramodular region-specific coexpression networks using BrainSpan's transcriptomes, and the genomewide association studies identified risk variants of CPD, confirmed the associations between CPD and each gene set in the region-specific subnetworks using an independent dataset, and conducted bioinformatic analyses. Eight brain-region-specific coexpression subnetworks were identified in association with CPD: amygdala, hippocampus, medial prefrontal cortex (MPFC), orbitofrontal cortex (OPFC), dorsolateral prefrontal cortex, striatum, mediodorsal nucleus of the thalamus (MDTHAL), and primary motor cortex (M1C). Each gene set in the eight subnetworks was associated with CPD. We also identified three hub proteins encoded by GRIN2A in the amygdala, PMCA2 in the hippocampus, MPFC, OPFC, striatum, and MDTHAL, and SV2B in M1C. Intriguingly, the pancreatic secretion pathway appeared in all the significant protein interaction subnetworks, suggesting pleiotropic effects between cigarette smoking and pancreatic diseases. The three hub proteins and genes are implicated in stress response, drug memory, calcium homeostasis, and inhibitory control. These findings provide novel evidence of the neurogenetic underpinnings of smoking severity.
Assuntos
Estudo de Associação Genômica Ampla , Nicotina , Humanos , Transcriptoma , Encéfalo , Corpo EstriadoRESUMO
PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.
RESUMO
BACKGROUND: Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aß) is central to AD pathophysiology, and Aß oligomers are among the most toxic forms of Aß. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aß oligomers to neurons. Preclinical studies of CT1812 have demonstrated its ability to displace Aß oligomers from neurons, restore synapses in cell cultures, and improve cognitive measures in mouse models of AD. CT1812 was found to be generally safe and well tolerated in a placebo-controlled phase 1 clinical trial in healthy volunteers and phase 1a/2 clinical trials in patients with mild to moderate dementia due to AD. The unique objective of this study was to incorporate synaptic positron emission tomography (PET) imaging as an outcome measure for CT1812 in AD patients. METHODS: The present phase 1/2 study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted in 23 participants with mild to moderate dementia due to AD to primarily evaluate the safety of CT1812 and secondarily its pharmacodynamic effects. Participants received either placebo or 100 mg or 300 mg per day of oral CT1812 for 24 weeks. Pharmacodynamic effects were assessed using the exploratory efficacy endpoints synaptic vesicle glycoprotein 2A (SV2A) PET, fluorodeoxyglucose (FDG) PET, volumetric MRI, cognitive clinical measures, as well as cerebrospinal fluid (CSF) biomarkers of AD pathology and synaptic degeneration. RESULTS: No treatment differences relative to placebo were observed in the change from baseline at 24 weeks in either SV2A or FDG PET signal, the cognitive clinical rating scales, or in CSF biomarkers. Composite region volumetric MRI revealed a trend towards tissue preservation in participants treated with either dose of CT1812, and nominally significant differences with both doses of CT1812 compared to placebo were found in the pericentral, prefrontal, and hippocampal cortices. CT1812 was safe and well tolerated. CONCLUSIONS: The safety findings of this 24-week study and the observed changes on volumetric MRI with CT1812 support its further clinical development. TRIAL REGISTRATION: The clinical trial described in this manuscript is registered at clinicaltrials.gov (NCT03493282).
Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Projetos Piloto , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidianoRESUMO
Regional differences in synaptic degeneration may underlie differences in clinical presentation and neuropathological disease progression in Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Here, we mapped and quantified synaptic degeneration in cortical brain regions in PD, PD with dementia (PDD) and DLB, and assessed whether regional differences in synaptic loss are linked to axonal degeneration and neuropathological burden. We included a total of 47 brain donors, 9 PD, 12 PDD, 6 DLB and 20 non-neurological controls. Synaptophysin+ and SV2A+ puncta were quantified in eight cortical regions using a high throughput microscopy approach. Neurofilament light chain (NfL) immunoreactivity, Lewy body (LB) density, phosphorylated-tau and amyloid-ß load were also quantified. Group differences in synaptic density, and associations with neuropathological markers and Clinical Dementia Rating (CDR) scores, were investigated using linear mixed models. We found significantly decreased synaptophysin and SV2A densities in the cortex of PD, PDD and DLB cases compared to controls. Specifically, synaptic density was decreased in cortical regions affected at Braak α-synuclein stage 5 in PD (middle temporal gyrus, anterior cingulate and insula), and was additionally decreased in cortical regions affected at Braak α-synuclein stage 4 in PDD and DLB compared to controls (entorhinal cortex, parahippocampal gyrus and fusiform gyrus). Synaptic loss associated with higher NfL immunoreactivity and LB density. Global synaptophysin loss associated with longer disease duration and higher CDR scores. Synaptic neurodegeneration occurred in temporal, cingulate and insular cortices in PD, as well as in parahippocampal regions in PDD and DLB. In addition, synaptic loss was linked to axonal damage and severe α-synuclein burden. These results, together with the association between synaptic loss and disease progression and cognitive impairment, indicate that regional synaptic loss may underlie clinical differences between PD and PDD/DLB. Our results might provide useful information for the interpretation of synaptic biomarkers in vivo.