Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Ultrason Sonochem ; 111: 107076, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39357212

RESUMO

This comprehensive review explores the interplay between inorganic salts and ultrasound-assisted degradation of various contaminants. The addition of salt to aqueous matrices has been attributed to increasing contaminant degradation via the salting-out effect. However, research investigating the impact of salt on degradation has yielded inconsistent results. This review incorporated degradation information from 44 studies organizing data according to compound class and ionic strength to analyze the impact of inorganic salts on cavitation bubble dynamics, contaminant behavior, radical species generation, and contaminant degradation. Frequency and salt type were assessed for potential roles in contaminant degradation. The analysis showed that high intensity ultrasound was most beneficial to degradation in salt solutions. Unexpectedly, hydrophilic compounds showed marked enhancement with increasing ionic strength while many hydrophobic compounds did not benefit as greatly. Based on the collected data and analysis, enhanced degradation in the presence of salt appears to be primarily radical-mediated rather than due to the salting-out effect. Finally, the analysis provides guidance for designing sonolytic reactors for contaminant degradation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39401271

RESUMO

Aqueous poly(vinyl alcohol) (PVA) gel electrolyte-based quasi-solid-state electrical double-layer capacitors (QSEDLCs) have been extensively investigated in the past ten years, but challenges remain to fabricate the PVA gel electrolyte possessing both superior mechanical and outstanding electrochemical performances. Herein, we develop a strategy to address this issue by a rational design of PVA gel electrolytes, based on a combination of the freeze-thaw (FT) method and sodium perchlorate (NaClO4)-based water-in-salt (WIS) electrolyte. Our study demonstrates that either the FT method or the NaClO4-based WIS electrolyte can improve both the mechanical performance of the PVA gel electrolyte by increasing the crystallization of PVA chains and the electrochemical performance of the PVA gel electrolyte-based QSEDLC by different mechanisms. In comparison with the conventional solvent evaporation method, this work provides an effective strategy to concurrently improve both the mechanical and electrochemical performances of aqueous QSEDLCs.

3.
ACS Appl Mater Interfaces ; 16(39): 53007-53021, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39303004

RESUMO

Although poly(vinyl alcohol) (PVA) hydrogel has high elasticity and is suitable for cartilage tissue engineering, it is difficult to have both high strength and toughness. In this study, a simple and universal strategy is proposed to prepare strong and tough PVA hydrogels by in situ forming nanofibers on the original network structure induced by a molecular chain rearrangement. Quenching-tempering alteratively in ethanol and water several times is carried out to strengthen PVA hydrogels (PVA-Etn hydrogels) due to the advantages of noncovalent bonds in adjustability and reversibility. The results show that, after three quenching-tempering cycles, PVA-Et3 hydrogel with water content up to 79 wt % shows comprehensive improved mechanical properties. The compression modulus, tensile modulus, fracture strength, tensile strain, and tear energy of the PVA-Et3 hydrogel are 270, 250, 260, 130, and 180% of the initial PVA hydrogel, respectively. The improved mechanical properties of the PVA-Et3 hydrogel are attributed to the strong cross-linked PVA chains and hydrogen bond-reinforced nanofibers. This study not only provides a simple and efficient solution for the preparation of strong and tough polymer scaffolds in tissue engineering but also provides new insights for understanding the mechanism of improving the mechanical properties of polymer hydrogels by adjusting the molecular structure.

4.
Adv Sci (Weinh) ; : e2405880, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162177

RESUMO

Hydrogel sensors are widely utilized in soft robotics and tissue engineering due to their excellent mechanical properties and biocompatibility. However, in high-water environments, traditional hydrogels can experience significant swelling, leading to decreased mechanical and electrical performance, potentially losing shape, and sensing capabilities. This study addresses these challenges by leveraging the Hofmeister effect, coupled with directional freezing and salting-out techniques, to develop a layered, high-strength, tough, and antiswelling PVA/MXene hydrogel. In particular, the salting-out process enhances the self-entanglement of PVA, resulting in an S-PM hydrogel with a tensile strength of up to 2.87 MPa. Furthermore, the S-PM hydrogel retains its structure and strength after 7 d of swelling, with only a 6% change in resistance. Importantly, its sensing performance is improved postswelling, a capability rarely achievable in traditional hydrogels. Moreover, the S-PM hydrogel demonstrates faster response times and more stable resistance change rates in underwater tests, making it crucial for long-term continuous monitoring in challenging aquatic environments, ensuring sustained operation and monitoring.

5.
Angew Chem Int Ed Engl ; : e202410434, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078870

RESUMO

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO4 from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and H2O, initiated by the SO42--driven H2O polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO4. The urea-modified PVA-ZnSO4 HEs featuring a high ionic conductivity up to 31.2 mS cm-1 successfully solves the sluggish ionic transport dilemma at the solid-solid interface. Moreover, an organic solid-electrolyte-interphase can be derived from the in-situ electro-polymerization of urea to prohibit H2O-involved side reactions, thereby prominently improving the reversibility of Zn chemistry. Consequently, Zn anodes witness an impressive lifespan extension from 50 h to 2200 h at 0.1 mA cm-2 while the Zn-I2 full battery maintains a remarkable Coulombic efficiency (>99.7%) even after 8000 cycles. The anti-salting-out strategy proposed in this work provides an insightful concept for addressing the phase separation issue of functional HEs.

6.
Adv Healthc Mater ; : e2400803, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036862

RESUMO

The simultaneous application of photothermal therapy (PTT) and photodynamic therapy (PDT) offers substantial advantages in cancer treatment. However, their synergistic anticancer efficacy is often limited by tumor hypoxia, and thermotolerance induced by high expression of heat shock proteins (HSP). Fortunately, hydrogen sulfide (H2S), known for its direct cytotoxic effect on tumor cells, has been recognized for its ability to enhance PTT and PDT. The effectiveness of H2S in these therapies is challenged by its low loading efficiency, poor stability, and short diffusion distance. To address these issues, a nanoscale emulsion drop template created through the salting-out effect is employed to construct a robust H2S delivery system. Polydopamine (PDA), chosen for its interfacial polymerization tendency and excellent photothermal conversion rate, is utilized as a carrier for the H2S donor (ADT) and Zinc phthalocyanine (ZnPc) to fabricate a novel nanomedicine termed APZ NPs. The temperature-responsive APZ NPs are designed to release H2S during the PTT process. Elevated H2S levels promoted vasodilation, thereby enhancing the enhanced permeability and retention effect (EPR) of APZ NPs within solid tumors. This strategy effectively alleviated tumor hypoxia by disrupting the mitochondrial respiratory chain and mitigated tumor cell heat tolerance by inhibiting HSP expression.

7.
Biomed Chromatogr ; 38(9): e5955, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973552

RESUMO

Ceftriaxone (CTRX) is a commonly used cephalosporin antibiotic. It is suggested that monitoring plasma/serum concentrations is helpful for its safe use. This study aimed to develop and validate an analytical method for measuring CTRX concentrations in human serum according to International Conference on Harmonization guideline M10. Ten microliters of serum sample was purified using a salting-out assisted liquid-liquid extraction procedure with magnesium sulfate. The upper layer was then diluted threefold and analyzed using a liquid chromatography-tandem mass spectrometry-based method with a total run time of 12 min. The linear calibration curve was obtained over the concentration range 5-500 µg/ml. The within-run accuracy varied from 0.2 to 6.5%, and the precision was ≤8.0%. The between-run accuracy and precision ranged from 0.7% to 5.6% and ≤6.4%, respectively. Significant carryover was resolved by injecting four blanks after high-concentration CTRX samples. The recovery rates from spiked serum at low and high concentrations were 44.4 and 43.4%, respectively. Other factors, including selectivity, matrix effects, stability, dilution integrity and reinjection reproducibility also met the acceptance criteria. Serum concentrations in 14 samples obtained from two participants receiving 2 g/day of CTRX were successfully determined using this method.


Assuntos
Ceftriaxona , Extração Líquido-Líquido , Espectrometria de Massas em Tandem , Humanos , Extração Líquido-Líquido/métodos , Ceftriaxona/sangue , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Modelos Lineares , Limite de Detecção , Cromatografia Líquida/métodos
8.
J Pharm Biomed Anal ; 248: 116319, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908235

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants of great concern due to their carcinogenicity and mutagenicity. Their determination in human serum, particularly in at-risk populations, is necessary but difficult because they are distributed over a wide range of polarity and are present at trace level. A new method combining salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) adapted to a reduced volume of sample (100 µl) was developed to determine 24 PAHs in human serum. Some key parameters of DLLME-SFO (volume of extraction solvent, ratio of extraction/dispersive solvent volumes, and salt addition) were first studied by applying it to spiked pure water. For its application to serum, a sample treatment step involving SALLE was optimized in terms of nature and content of salts and applied upstream of DLLME-SFO. It was applied to the extraction of 24 regulated PAHs from spiked serum followed by an analysis by liquid chromatography coupled with UV and fluorescence detection. The extraction recoveries ranged from 48.2 and 116.0 % (relative standard deviations: 2.0-14.6 %, n=5-9), leading to limits of quantification of PAHs in human serum from 0.04 to 1.03 µg/L using fluorescence detection and from 10 to 40 µg/L using UV detection. This final method combining SALLE and DLLME-SFO showed numerous advantages such as no evaporation step, high efficiency and low solvent-consumption and will be useful for monitoring PAHs in low volumes of serum.


Assuntos
Microextração em Fase Líquida , Extração Líquido-Líquido , Hidrocarbonetos Policíclicos Aromáticos , Solventes , Humanos , Microextração em Fase Líquida/métodos , Hidrocarbonetos Policíclicos Aromáticos/sangue , Hidrocarbonetos Policíclicos Aromáticos/análise , Solventes/química , Extração Líquido-Líquido/métodos , Limite de Detecção , Sais/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos
9.
Sci Total Environ ; 944: 173857, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871333

RESUMO

Spatiotemporal monitoring of pesticide residues in river water is urgently needed due to its negative environmental and human health consequences. The present study is to investigate the occurrence of multiclass pesticide residue in the surface water of the Feni River, Bangladesh, using an optimized salting-out assisted liquid-liquid microextraction (SALLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized SALLME method was developed and validated following the SANTE/11312/2021 guidelines. A total of 42 water samples were collected and analyzed to understand the spatiotemporal distribution of azoxystrobin (AZ), buprofezin (BUP), carbofuran (CAR), pymetrozine (PYM), dimethoate (DMT), chlorantraniliprole (CLP), and difenoconazole (DFN). At four spike levels (n = 5) of 20, 40, 200, and 400 µg/L, the recovery percentages were satisfactory, ranging between 71.1 % and 107.0 % (RSD ≤13.8 %). The residues ranged from below the detection level (BDL) to 14.5 µg/L. The most frequently detected pesticide was DMT (100 %), followed by CLP (52.3809-57.1429), CAR (4.7619-14.2867), and PYM (4.7619-9.5238). However, AZ and BUP were below the detection limit in the analyzed samples of both seasons. Most pesticides and the highest concentrations were detected in March 2023, while the lowest concentrations were present in August 2023.Furthermore, ecological risk assessment based on the general-case scenario (RQm) and worst-case scenario (RQex) indicated a high (RQ > 1) risk to aquatic organisms, from the presence of PYM and CLP residue in river water. Human health risk via dietary exposure was estimated using the hazard quotient (HQ). Based on the detected residues, the HQ (<1) value indicated no significant health risk. This report provides the first record of pesticide residue occurrences scenario and their impact on the river environment of Bangladesh.


Assuntos
Monitoramento Ambiental , Resíduos de Praguicidas , Rios , Poluentes Químicos da Água , Bangladesh , Poluentes Químicos da Água/análise , Rios/química , Resíduos de Praguicidas/análise , Medição de Risco , Humanos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Análise Espaço-Temporal , Microextração em Fase Líquida
10.
Small ; : e2403322, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898720

RESUMO

Mineralized bio-tissues achieve exceptional mechanical properties through the assembly of rigid inorganic minerals and soft organic matrices, providing abundant inspiration for synthetic materials. Hydrogels, serving as an ideal candidate to mimic the organic matrix in bio-tissues, can be strengthened by the direct introduction of minerals. However, this enhancement often comes at the expense of toughness due to interfacial mismatch. This study reveals that extreme toughening of hydrogels can be realized through simultaneous in situ mineralization and salting-out, without the need for special chemical modification or additional reinforcements. The key to this strategy lies in harnessing the kosmotropic and precipitation behavior of specific anions as they penetrate a hydrogel system containing both anion-sensitive polymers and multivalent cations. The resulting mineralized hydrogels demonstrate significant improvements in fracture stress, fracture energy, and fatigue threshold due to a multiscale energy dissipation mechanism, with optimal values reaching 12 MPa, 49 kJ m-2, and 2.98 kJ m-2. This simple strategy also proves to be generalizable to other anions, resulting in tough hydrogels with osteoconductivity for promoting in vitro mineralization of human adipose-derived mesenchymal stem cells. This work introduces a universal route to toughen hydrogels without compromising other parameters, holding promise for biological applications demanding integrated mechanical properties.

11.
Methods ; 229: 63-70, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917960

RESUMO

Studying the molecular and immunological basis of allergic diseases often requires purified native allergens. The methodologies for protein purification are usually difficult and may not be completely successful. The objective of this work was to describe a methodology to purify allergens from their natural source, while maintaining their native form. The purification strategy consists of a three-step protocol and was used for purifying five specific allergens, Ole e 1, Amb a 1, Alt a 1, Bet v 1 and Cup a 1. Total proteins were extracted in PBS (pH 7.2). Then, the target allergens were pre-purified and enriched by salting-out using increasing concentrations of ammonium sulfate. The allergens were further purified by anion exchange chromatography. Purification of Amb a 1 required an extra step of cation exchange chromatography. The detection of the allergens in the fractions obtained were screened by SDS-PAGE, and Western blot when needed. Further characterization of purified Amb a 1 was performed by mass spectrometry. Ole e 1, Alt a 1, Bet v 1 and Cup a 1 were obtained at > 90 % purity. Amb a 1 was obtained at > 85 % purity. Overall, we propose an easy-to-perform purification approach that allows obtaining highly pure allergens. Since it does not involve neither chaotropic nor organic reagents, we anticipate that the structural and biological functions of the purified molecule remain intact. This method provides a basis for native allergen purification that can be tailored according to specific needs.


Assuntos
Alérgenos , Alérgenos/química , Alérgenos/isolamento & purificação , Alérgenos/imunologia , Cromatografia por Troca Iônica/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Sulfato de Amônio/química
12.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794249

RESUMO

The bitter drug, warfarin, has a narrow therapeutic index (NTI) and is used in paediatrics and geriatrics. The aim of this feasibility study was to formulate the taste-masked warfarin-containing pellets to be applicable for dose personalisation and to improve patient compliance, as well as to investigate the effect of the core type (PharSQ® Spheres M, CELPHERE™ CP-507, and NaCl) on the warfarin release from the Kollicoat® Smartseal taste-masking-coated pellets. The cores were successfully drug-loaded and coated in a fluid-bed coater with a Wurster insert. An increase in particle size and particle size distribution was observed by optical microscopy. In saliva-simulated pH, at the Kollicoat® Smartseal level of 2 mg/cm2, none of the pellets demonstrated drug release, confirming their efficient taste-masking. However, in a stomach-simulated pH, a faster drug release was observed from PharSQ® Spheres M- and CELPHERE™ CP-507-coated pellets in comparison with NaCl cores. Additional experiments allowed us to explain the slower drug release from NaCl-containing pellets because of the salting-out effect. Despite the successful taste masking, the drug release from pellets was relatively slow (not more than 91% per 60 min), allowing for further formulation improvements.

13.
Sci Rep ; 14(1): 10720, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729971

RESUMO

The results revealed the significant effect of NaCl, KCl, CaCl2, MgCl2, CaSO4, MgSO4, and Na2SO4 and pH values of 3.5-11 on the interfacial tension (IFT) reduction using three types of neutral, acidic, and basic crude oils, especially for acidic crude oil (crude oil II) as the pH was changed from 3.5 to 11 (due to saponification process). The findings showed the highest impact of pH on the IFT of crude oil II with a reducing trend, especially for the pH 11 when no salts exist. The results revealed that the salts except MgCl2 and CaCl2 led to a similar IFT variation trend for the case of distilled water/crude oil II. For the MgCl2 and CaCl2 solutions, a shifting point for IFT values was inevitable. Besides, the dissolution of 1-dodecyl-3-methyl imidazolium chloride ([C12mim][Cl]) with a concentration of 100-1000 ppm eliminates the effect of pH on IFT which leads to a reducing trend for all the examined crude oils with minimum IFT of 0.08 mN/m. Finally, the [C12mim][Cl] adsorption (under pH values) for crude oils using only Na2SO4 was measured and the minimum adsorption of 0.41 mg surfactant/g Rock under the light of saponification process was obtained.

14.
Bioresour Bioprocess ; 11(1): 44, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722416

RESUMO

As an alternative to antibiotics in response to antimicrobial-resistant infections, bacteriophages (phages) are garnering renewed interest in recent years. However, the massive preparation of phage is restricted using traditional pathogens as host cells, which incurs additional costs and contamination. In this study, an opportunistic pathogen, Klebsiella pneumoniae used to convert glycerol to 1,3-propanediol (1,3-PDO), was reused to prepare phage after fermentation. The phage infection showed that the fed-batch fermentation broth containing 71.6 g/L 1,3-PDO can be directly used for preparation of phage with a titer of 1 × 108 pfu/mL. Then, the two-step salting-out extraction was adopted to remove most impurities, e.g. acetic acid (93.5%), ethanol (91.5%) and cells (99.4%) at the first step, and obtain 1,3-PDO (56.6%) in the top phase as well as phage (97.4%) in the middle phase at the second step. This integrated process provides a cheap and environment-friendly manner for coproduction of 1,3-PDO and phage.

15.
Ital J Food Saf ; 13(1): 12117, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38577578

RESUMO

A simple and practical method was developed to extract histamine from fish products using sodium chloride (NaCl). After obtaining a saline extract from fish samples, histamine was derivatized by a condensation reaction with ortho-phthalaldehyde. Fluorescence intensity was measured by a fluorimeter. The first part of this work concerned a solid-liquid extraction tested with samples from the food analysis performance assessment scheme. The best histamine extraction yield (97%) was obtained using an extraction time of 4 minutes, a temperature of 40°C, and a NaCl/water ratio of 41% (w/w). The second part focused on a liquid-liquid extraction carried out on standard solutions of histamine (45, 90, and 180 mg/kg). The use of NaCl (41%) and trichloroacetic acid [(TCA) 10%] did not show any significant difference in extraction yield. The yield obtained was 99.15-100.1% for TCA (10%) and 98.65-99.45% for NaCl (41%). The validation criteria (repeatability and reproducibility) were checked by evaluating the reliability of the method. Extraction using NaCl has proven to be an interesting alternative method for the extraction of histamine from fish, as it is reliable, inexpensive, and less hazardous.

16.
Int J Biol Macromol ; 267(Pt 2): 131536, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608993

RESUMO

Cellulosic hydrogels are widely used in various applications, as they are natural raw materials and have excellent degradability. However, their poor mechanical properties restrict their practical application. This study presents a facile approach for fabricating cellulosic hydrogels with high strength by synergistically utilizing salting-out and ionic coordination, thereby inducing the collapse and aggregation of cellulose chains to form a cross-linked network structure. Cellulosic hydrogels are prepared by soaking cellulose in an Al2(SO4)3 solution, which is both strong (compressive strength of up to 16.99 MPa) and tough (compressive toughness of up to 2.86 MJ/m3). The prepared cellulosic hydrogels exhibit resistance to swelling in different solutions and good biodegradability in soil. The cellulosic hydrogels are incorporated into strain sensors for human-motion monitoring by introducing AgNWs. Thus, the study offers a promising, simple, and scalable approach for preparing strong, degradable, and anti-swelling hydrogels using common biomass resources with considerable potential for various applications.


Assuntos
Celulose , Hidrogéis , Hidrogéis/química , Celulose/química , Força Compressiva , Humanos , Íons/química
17.
Food Chem ; 447: 138960, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461727

RESUMO

Iron Chlorin e6 (ICE6), a star plant growth regulator (PGR) with independent intellectual property rights in China, has demonstrated its efficacy through numerous field experiments. We innovatively employed salting-out assisted liquid-liquid extraction (SALLE) with HPLC-UV/Vis to detect ICE6 residues in water, soil, garlic seeds, and sprouts. Using methanol and a C18 column with acetonitrile: 0.1% phosphoric acid mobile phase (55:45, v:v), we achieved a low LOQ of 0.43 to 0.77 µg kg-1. Calibration curves showed strong linearity (R2 > 0.992) within 0.01 to 5.00 mg kg-1. Inter-day and intra-day recoveries (0.05 to 0.50 mg kg-1) demonstrated high sensitivity and accuracy (recoveries: 75.36% to 107.86%; RSD: 1.03% to 8.78%). Additionally, density functional theory (DFT) analysis aligned UV/Vis spectra and indicated ICE6's first-order degradation (2.03 to 4.94 days) under various environmental conditions, mainly driven by abiotic degradation. This study enhances understanding of ICE6's environmental behavior, aids in risk assessment, and guides responsible use in agroecosystems.


Assuntos
Alho , Metaloporfirinas , Cromatografia Líquida de Alta Pressão/métodos , Hidrólise , Solo , Extração Líquido-Líquido/métodos
18.
Heliyon ; 10(5): e27143, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455586

RESUMO

In this study, a novel and convenient analytical method based on salting-out-assisted liquid phase microextraction (SA-LPME) has been developed. A spectrophotometric technique was employed to quantify the concentration of phenol in drinking water and treated wastewater, as well as the phenol impurity in 2-phenoxyethanol (PE). To accomplish this, a solution containing dissolved PE was supplemented with 4-aminoantipyrine (4-AAP) and hexacyanoferrate. Subsequently, NaCl was added to induce the formation of a two-phase system, consisting of fine droplets of PE as an extractant phase in the aqueous phase. The resulting red derivative was then extracted into the extractant phase and separated through centrifugation. Finally, the absorbance of the extracted derivative was measured at 520 nm. The Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD) was employed to optimize the influential factors, namely 4-Aminoantipyrine (4-AAP), buffer (pH = 10), hexacyanoferrate, and NaCl. By utilizing the optimal conditions (buffer: 50 µL, 4-AAP (1% w/v): 80 µL, hexacyanoferrate (10% w/v): 65 µL, and NaCl: 0.7 g per 10 mL of the sample), the limit of detection was determined to be 0.7 ng mL-1 and 0.22 µg g-1 for water and PE samples, respectively. The relative standard deviation (RSD) and correlation of determination (r2) obtained fell within the range of 2.4-6.8% and 0.9983-0.9994, respectively. Moreover, an enrichment factor of 65 was achieved for a sample volume of 10 mL. The phenol concentration in two PE samples (PE-1, PE-2), provided by a pharmaceutical company (Pars Sadra Fanavar, Iran), were determined to be 0.83 ± 0.05 µg g-1 and 2.70 ± 0.14 µg g-1, respectively. Additionally, the phenol index in drinking water and treated municipal wastewater was found to be 3.60 ± 1.06 ng mL-1 and 4.60 ± 1.17 ng mL-1, respectively. These mentioned samples were spiked in order to evaluate the potential influence of the matrix. The relative recoveries from PE-1, PE-2 samples, drinking water, and treated municipal wastewater samples were measured as 104.5%, 97.5%, 101.6%, and 107.8%, respectively, indicating no matrix effect.

19.
Small ; 20(31): e2310689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38421135

RESUMO

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Proantocianidinas , Quitosana/química , Proantocianidinas/química , Proantocianidinas/farmacologia , Animais , Coelhos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular
20.
J Colloid Interface Sci ; 661: 450-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308885

RESUMO

The development of a strong and tough conductive hydrogel capable of meeting the strict requirements of the electrode of a hydrogel-based triboelectric nanogenerator (H-TENG) remains an enormous challenge. Herein, a robust conductive polyvinyl alcohol (PVA) hydrogel is designed via a three-step method: (1) grafting with 3,4-dihydroxy benzaldehyde, (2) metal complexation using ferric chloride (FeCl3) and (3) salting-out using sodium citrate. The hydrogel contains robust crystalline PVA domains and reversible/high-density non-covalent interactions, such as hydrogen bonding, π-π interactions and Fe3+-catechol complexations. Benefiting from the crystalline domains, the hydrogel can resist external forces to the hydrogel network; meanwhile, the reversible/high-density of non-covalent interactions can impart gradual and persistent energy dissipation during deformation. The hydrogel possesses multiple cross-linked networks, with 6.47 MPa tensile stress, 1000 % strain, 35.24 MJ/m3 toughness and 37.59 kJ/m2 fracture energy. Furthermore, the inter-connected porous hydrogel has an ideal structure for ionic-conducing channels. The hydrogel is assembled into an H-TENG, which can generate open circuit voltage of âˆ¼ 150 V, short-circuit current of âˆ¼ 3.0 µA, with superb damage immunity. Subsequently, road traffic monitoring systems are innovatively developed and demonstrated by using the H-TENG. This study provides a novel strategy to prepare superiorly strong and tough hydrogels that can meet the high demand for H-TENGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA