Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
J Ethnopharmacol ; 336: 118711, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181286

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of Qi and blood in Traditional Chinese Medicine (TCM), the combination of Qi-reinforcing herbs and blood-activating herbs has a synergistic effect in improving blood stasis syndrome, especially in tumor treatment. The classic "Radix Astragali - Salvia miltiorrhiza" duo exemplifies this principle, renowned for invigorating Qi and activating blood flow, employed widely in tumor therapies. Our prior research underscores the potent inhibition of pancreatic tumor xenografts by the combination of Formononetin (from Radix Astragali) and Salvianolic acid B (from Salvia miltiorrhiza) in vitro. However, it remains unclear whether this combination can inhibit the abnormal vascularization of pancreatic tumors to achieve its anti-cancer effect. AIM OF THE STUDY: Abnormal vasculature, known to facilitate tumor growth and metastasis. Strategies to normalize tumor-associated blood vessels provide a promising avenue for anti-tumor therapy. This study aimed to unravel the therapeutic potential of Formononetin combined with Salvianolic acid B (FcS) in modulating pancreatic cancer's impact on endothelial cells, illuminate the underlying mechanisms that govern this therapeutic interaction, thereby advancing strategies to normalize tumor vasculature and combat cancer progression. MATERIALS AND METHODS: A co-culture system involving Human Umbilical Vein Endothelial Cells (HUVECs) and PANC-1 cells was established to investigate the potential of targeting abnormal vasculature as a novel anti-tumor therapeutic strategy. We systematically compared HUVEC proliferation, migration, invasion, and lumenogenesis in both mono- and co-culture conditions with PANC-1 (H-P). Subsequently, FcS treatment of the H-P system was evaluated for its anti-angiogenic properties. Molecular docking was utilized to predict the interactions between Formononetin and Salvianolic acid B with RhoA, and the post-treatment expression of RhoA in HUVECs was assessed. Furthermore, we utilized shRhoA lentivirus to elucidate the role of RhoA in FcS-mediated effects on HUVECs. In vivo, a zebrafish xenograft tumor model was employed to assess FcS's anti-tumor potential, focusing on cancer cell proliferation, migration, apoptosis, and vascular development. RESULTS: FcS treatment demonstrated a significant, dose-dependent inhibition of PANC-1-induced alterations in HUVECs, including proliferation, migration, invasion, and tube formation capabilities. Molecular docking analyses indicated potential interactions between FcS and RhoA. Further, FcS treatment was found to downregulate RhoA expression and modulated the PI3K/AKT signaling pathway in PANC-1-induced HUVECs. Notably, the phenotypic inhibitory effects of FcS on HUVECs were attenuated by RhoA knockdown. In vivo zebrafish studies validated FcS's anti-tumor activity, inhibiting cancer cell proliferation, metastasis, and vascular sprouting, while promoting tumor cell apoptosis. CONCLUSIONS: This study underscores the promising potential of FcS in countering pancreatic cancer-induced endothelial alterations. FcS exhibits pronounced anti-abnormal vasculature effects, potentially achieved through downregulation of RhoA and inhibition of the PI3K/Akt signaling pathway, thereby presenting a novel therapeutic avenue for pancreatic cancer management.


Assuntos
Benzofuranos , Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Isoflavonas , Neoplasias Pancreáticas , Proteína rhoA de Ligação ao GTP , Isoflavonas/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Benzofuranos/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Peixe-Zebra , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Depsídeos
2.
Br J Pharmacol ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443080

RESUMO

BACKGROUND AND PURPOSE: Salvianolic acid B (SalB) demonstrates diverse clinical applications, particularly in cardiovascular and cerebral protection. This study primarily investigated the effects of SalB on sepsis. EXPERIMENTAL APPROACH: The model of sepsis via caecal ligation puncture (CLP) was established in male C57BL/6 mice. Therapeutic effects of SalB on hepatic and pulmonary injury, inflammatory responses and microcirculatory disturbances in sepsis were evaluated. Platelet aggregation and adhesion were measured via flow cytometry and an adhesion test. After overexpression of platelet-related activating molecules by 293T cells, the efficient binding of SalB and platelet CD226 molecules was further evaluated. Finally, neutralizing antibody experiments were used to assess the mechanism of SalB in alleviating the progression of sepsis. KEY RESULTS: SalB mitigated hepatic and pulmonary impairments, reduced inflammatory cytokine levels and enhanced mesenteric microvascular blood flow in septic mice. SalB enhanced CLP-induced reduction of platelet count and platelet pressure cumulative volume. SalB reduced platelet adhesion to endothelial cells and platelet aggregation to leukocytes. A high binding efficiency was observed between SalB and the platelet adhesion molecule CD226. Ex vivo, interactions between SalB and platelets from CD226-knockout mice were markedly decreased. In vivo administration of CD226 neutralizing antibodies significantly delayed disease progression and enhanced mesenteric microcirculation in septic mice. CONCLUSION AND IMPLICATIONS: In our murine model of sepsis, treatment with SalB improved the microcirculatory disturbance and hindered the progression of sepsis by inhibiting platelet CD226 function. Our results suggest SalB is a promising therapeutic approach to the treatment of sepsis.

3.
Front Pharmacol ; 15: 1452545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323645

RESUMO

Background: Salvianolic acid B is the most abundant water-soluble component in the traditional Chinese medicine Danshen and can reduce myocardial ischemia-reperfusion (MI/R) injury through multiple targets and pathways. However, the role of SalB in protecting the myocardium from ischemia/reperfusion injury remains unclear. Purpose: To perform a preclinical systematic review and meta-analysis to assess the efficacy of Sal B in an animal model of myocardial infarction/reperfusion (MI/R) and to summarize the potential mechanisms of Sal B against MI/R. Methods: Studies published from inception to March 2024 were systematically searched in PubMed, Web of Science, Embase, China National Knowledge Infrastructure Wanfang, and VIP databases. The methodological quality was determined using the SYRCLE RoB tool. The R software was used to analyze the data. The potential mechanisms are categorized and summarized. Results: 32 studies containing 732 animals were included. The results of the meta-analysis showed that Sal B reduced myocardial infarct size (p < 0.01), and the cardiological indices of CK-MB (p < 0.01), CK (p < 0.01), LDH (p < 0.01), and cTnI (p < 0.01) compared to the control group. In addition, Sal B increased cardiac function indices, such as LVFS (p < 0.01), -dp/dt max (p < 0.01), +dp/dt max (p < 0.01), and cardiac output (p < 0.01). The protective effects of Sal B on the myocardium after I/R may be mediated by attenuating oxidative stress and inflammation, promoting neovascularization, regulating vascular function, and attenuating cardiac myocyte apoptosis. Publication bias was observed in all the included studies. Further studies are required to elucidate the extent of the cardioprotective effects of SalB and the safety of its use. Conclusion: To the best of our knowledge, this is the first meta-analysis of Sal B in the treatment of MI/R injury, and Sal B demonstrated a positive effect on MI/R injury through the modulation of key pathological indicators and multiple signaling pathways. Further studies are needed to elucidate the extent to which SalB exerts its cardioprotective effects and the safety of its use. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/.

4.
Phytomedicine ; 134: 155994, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39243751

RESUMO

BACKGROUND: Salvianolic Acid B (SalB) has been proven to delay the progression of atherosclerosis. The therapeutic mechanisms of this compound are unclear. A novel class of short non-coding RNAs, pre-transfer RNA and mature transfer RNA (tsncRNAs) may regulate gene expression. TsncRNAs-sequencing revealed novel therapeutic targets for SalB. This is the first study focusing on tsncRNAs to treat atherosclerosis using SalB. PURPOSE: To explore the potential mechanism of SalB treating atherosclerosis through tsncRNAs. METHODS: Five groups of mice were created at random: control group (CON), atherosclerosis model group (MOD), SalB with high dose-treated group (SABH), SalB with low dose-treated group (SABL), and Simvastatin-treated group (ST). Aortic sinus plaque, body weight and inflammatory cytokines were evaluated. The Illumina NextSeq equipment was used to do expression profiling of tsncRNAs from serum. The targets of tsncRNAs were then predicted using tRNAscan and TargetScan. The KEGG pathway and GO analysis were utilized to forecast the bioinformatics analysis. Potential tsncRNAs and associated mRNAs were validated using quantitative real-time PCR. RESULTS: tRF-Glu-CTC-014 and tRF-Gly-GCC-074 were markedly increased by SalB with high dose treatment and validated with quantitative real-time PCR. Two mRNAs SRF and Arrb related to tRF-Glu-CTC-014 changed consistently. GO analysis revealed that the altered target genes of the selected tsncRNAs were most enriched in protein binding and cellular process. Moreover, KEGG pathway analysis demonstrated that altered target genes of tsncRNAs were most enriched in MAPK signaling pathway. CONCLUSION: SalB can promote the expression of tRF-Glu-CTC-014 to treat atherosclerosis.


Assuntos
Aterosclerose , Benzofuranos , Camundongos Endogâmicos C57BL , Animais , Aterosclerose/tratamento farmacológico , Benzofuranos/farmacologia , Masculino , Camundongos , Modelos Animais de Doenças , Citocinas/metabolismo , Citocinas/sangue , Sinvastatina/farmacologia , Depsídeos
5.
Am J Chin Med ; 52(5): 1359-1396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39212495

RESUMO

Salvianolic acid B (SalB), among the most abundant bioactive polyphenolic compounds found in Salvia miltiorrhiza Bge., exerts therapeutic and protective effects against various diseases. Although some summaries of the activities of SalB exist, there is lack of a scientometric and in-depth review regarding disease therapy. In this review, scientometrics was employed to analyze the number of articles, publication trends, countries, institutions, keywords, and highly cited papers pertaining to SalB research. The scientometric findings showed that SalB exerts excellent protective effects on the heart, lungs, liver, bones, and brain, along with significant therapeutic effects against atherosclerosis (AS), Alzheimer's disease (AD), liver fibrosis, diabetes, heart/brain ischemia, and osteoporosis, by regulating signaling pathways and acting on specific molecular targets. Moreover, this review delves into in-depth insights and perspectives, such as the utilization of SalB in combination with other drugs, the validation of molecular mechanisms and targets, and the research and development of novel drug carriers and dosage forms. In conclusion, this review aimed to offer a comprehensive scientometric analysis and in-depth appraisal of SalB research, encompassing both present achievements and future prospects, thereby providing a valuable resource for the clinical application and therapeutic exploitation of SalB.


Assuntos
Benzofuranos , Benzofuranos/uso terapêutico , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Salvia miltiorrhiza/química , Aterosclerose/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Bibliometria , Fitoterapia , Osteoporose/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Medicina Tradicional Chinesa , Animais , Depsídeos
6.
Toxicol Appl Pharmacol ; 491: 117072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153513

RESUMO

AIMS: Septic cardiomyopathy is characterized by impaired contractile function and mitochondrial activity dysregulation. Salvianolic acid B (Sal B) is a potent therapeutic compound derived from the traditional Chinese medicine Salvia miltiorrhiza. This study explored the protective effects of Sal B on septic heart injury, emphasizing the mitochondrial unfolded protein response (UPRmt). MATERIALS AND METHODS: An in vivo mouse model of lipopolysaccharide (LPS)-induced heart injury was utilized to assess Sal B's protective role in septic cardiomyopathy. Additionally, cell models stimulated by LPS were developed to investigate the mechanisms of Sal B on UPRmt. Quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence were employed for molecular analysis. RESULTS: Sal B, administered at doses of 10, 30, and 60 mg/kg, demonstrated protective effects on cardiac contractile function, reduced heart inflammation, and mitigated cardiac injury in LPS-exposed mice. In cardiomyocytes, LPS induced apoptosis, elevated mitochondrial ROS levels, promoted mitochondrial fission, and decreased mitochondrial membrane potential, all of which were alleviated by Sal B. Mechanistically, Sal B was found to induce UPRmt both in vivo and in vitro. ATF5, identified as a UPRmt activator, was modulated by LPS and Sal B, resulting in increased ATF5 expression and its translocation from the cytosol to the nucleus. ATF5-siRNA delivery reversed UPRmt upregulation, exacerbating mitochondrial dysfunction in LPS-stimulated cardiomyocytes and counteracting the mitochondrial function enhancement in Sal B-treated cardiomyocytes. CONCLUSIONS: This study provides evidence that Sal B confers cardiac protection by enhancing UPRmt, highlighting its potential as a therapeutic approach for mitigating mitochondrial dysfunction in septic cardiomyopathy.


Assuntos
Benzofuranos , Cardiomiopatias , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Benzofuranos/farmacologia , Camundongos , Masculino , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Lipopolissacarídeos/toxicidade , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Depsídeos
7.
Front Pharmacol ; 15: 1442181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139645

RESUMO

Fibrosis is a public health issue of great concern characterized by the excessive deposition of extracellular matrix, leading to the destruction of parenchymal tissue and organ dysfunction that places a heavy burden on the global healthcare system due to its high incidence, disability, and mortality. Salvianolic acid B (SalB) has positively affected various human diseases, including fibrosis. In this review, we concentrate on the anti-fibrotic effects of SalB from a molecular perspective while providing information on the safety, adverse effects, and drug interactions of SalB. Additionally, we discuss the innovative SalB formulations, which give some references for further investigation and therapeutic use of SalB's anti-fibrotic qualities. Even with the encouraging preclinical data, additional research is required before relevant clinical trials can be conducted. Therefore, we conclude with recommendations for future studies. It is hoped that this review will provide comprehensive new perspectives on future research and product development related to SalB treatment of fibrosis and promote the efficient development of this field.

8.
Arch Physiol Biochem ; : 1-12, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101795

RESUMO

Diabetic skin wound is a disturbing and rapidly evolving clinical issue. Here, we investigated how salvianolic acid B (Sal B) affected the diabetic wound healing process. Following Sal B administration, histopathological damage was investigated by H&E and Masson staining, and CD34, apoptosis and mitophagy markers were measured by immunofluorescence, immunohistochemistry, and western blotting. Migration, proliferation, and mitochondrial function of high glucose (HG) -induced HMEC-1 cells were measured. The effects of si-Parkin on endothelial cell migration, apoptosis and mitochondrial autophagy were examined. Sal B alleviated inflammatory cell infiltration and promoted angiogenesis in skin wound tissue. Apoptosis and mitophagy were ameliorated by Sal B in diabetic skin wound tissues and HG-induced HMEC-1 cells. Parkin inhibition impaired the migratorypromoted cell apoptosis and inhibited mitophagy of HMEC-1 cells. This finding demonstrated that Sal B promoted diabetic skin wound repair via Pink1/Parkin-mediated mitophagy, improved our understanding of the diabetic wound healing process.

9.
Res Pract Thromb Haemost ; 8(4): 102443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38993621

RESUMO

Background: Salvianolic acid B (SAB) is a major component of Salvia miltiorrhiza root (Danshen), widely used in East/Southeast Asia for centuries to treat cardiovascular diseases. Danshen depside salt, 85% of which is made up of SAB, is approved in China to treat chronic angina. Although clinical observations suggest that Danshen extracts inhibited arterial and venous thrombosis, the exact mechanism has not been adequately elucidated. Objective: To delineate the antithrombotic mechanisms of SAB. Methods: We applied platelet aggregation and coagulation assays, perfusion chambers, and intravital microscopy models. The inhibition kinetics and binding affinity of SAB to thrombin are measured by thrombin enzymatic assays, intrinsic fluorescence spectrophotometry, and isothermal titration calorimetry. We used molecular in silico docking models to predict the interactions of SAB with thrombin. Results: SAB dose-dependently inhibited platelet activation and aggregation induced by thrombin. SAB also reduced platelet aggregation induced by adenosine diphosphate and collagen. SAB attenuated blood coagulation by modifying fibrin network structures and significantly decreased thrombus formation in mouse cremaster arterioles and perfusion chambers. The direct SAB-thrombin interaction was confirmed by enzymatic assays, intrinsic fluorescence spectrophotometry, and isothermal titration calorimetry. Interestingly, SAB shares key structural similarities with the trisubstituted benzimidazole class of thrombin inhibitors, such as dabigatran. Molecular docking models predicted the binding of SAB to the thrombin active site. Conclusion: Our data established SAB as the first herb-derived direct thrombin catalytic site inhibitor, suppressing thrombosis through both thrombin-dependent and thrombin-independent pathways. Purified SAB may be a cost-effective agent for treating arterial and deep vein thrombosis.

10.
Plants (Basel) ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999628

RESUMO

Danshen (Salvia miltiorrhiza) is a perennial medicinal plant belonging to the Lamiaceae family. It is adapted to a wide range of soil pH with the potential to serve as an alternative crop in the United States. To enhance its cultivation and economic viability, it is crucial to develop production practices that maximize bioactive compound yields for danshen. The objective of this study was to investigate the effects of different harvest times on plant growth and subsequent yields of bioactive components of danshen. Three harvest times were selected (60, 120, or 180 days after transplanting [DAT]). In general, plants harvested at 180 DAT had higher plant growth index (PGI), shoot number, shoot weight, root number, maximum root length, maximum root diameter, and root weight compared to plants harvested at 60 or 120 DAT. However, plants harvested at 60 or 120 DAT had higher SPAD (Soil Plant Analysis Development) values. Plants harvested at 120 or 180 DAT had a higher content of tanshinone I, tanshinone IIA, cryptotanshinone, and salvianolic acid B compared to those harvested at 60 DAT. This study provides insights for optimizing the time of harvest of danshen to maximize plant growth and bioactive compound production.

11.
Bioact Mater ; 40: 396-416, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39022185

RESUMO

Frozen shoulder (FS) manifests as progressively worsening pain and a reduction in shoulder range of motion (ROM). Salvianolic acid B (SaB) is recently expected to be used in the treatment of fibrosis diseases including FS. We firstly demonstrate that SaB can effectively hinder the progression of oxidative stress, inflammation, and pathological fibrosis within the synovial tissue in FS, potentially leading to the reduction or reversal of capsule fibrosis and joint stiffness. For further clinical application, we design and synthesize a novel, superior, antioxidant and antibacterial CSMA-PBA/OD-DA (CPDA) hydrogel for the delivery of SaB. In vitro experiments demonstrate that the CPDA hydrogel exhibits excellent biocompatibility and rheological properties, rendering it suitable for intra-articular injections. Upon injection into the contracted joint cavity of FS model rat, the SaB-CPDA hydrogel accelerate the recovery of ROM and exhibit superior anti-fibrosis effect, presenting the promise for the treatment of FS in vivo.

12.
Phytother Res ; 38(7): 3825-3836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38887974

RESUMO

Regulatory T cell (Treg) deficiency leads to immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which is a CD4+ T cell-driven autoimmune disease in both humans and mice. Despite understanding the molecular and cellular characteristics of IPEX syndrome, new treatment options have remained elusive. Here, we hypothesized that salvianolic acid B (Sal B), one of the main active ingredients of Salvia miltiorrhiza, can protect against immune disorders induced by Treg deficiency. To examine whether Sal B can inhibit Treg deficiency-induced autoimmunity, Treg-deficient scurfy (SF) mice with a mutation in forkhead box protein 3 were treated with different doses of Sal B. Immune cells, inflammatory cell infiltration, and cytokines were evaluated by flow cytometry, hematoxylin and eosin staining and enzyme-linked immunosorbent assay Kits, respectively. Moreover, RNA sequencing, western blot, and real-time PCR were adopted to investigate the molecular mechanisms of action of Sal B. Sal B prolonged lifespan and reduced inflammation in the liver and lung of SF mice. Moreover, Sal B decreased plasma levels of several inflammatory cytokines, such as IL-2, IFN-γ, IL-4, TNF-α, and IL-6, in SF mice. By analyzing the transcriptomics of livers, we determined the signaling pathways, especially the IL-2-signal transducer and activator of transcription 5 (STAT5) signaling pathway, which were associated with Treg deficiency-induced autoimmunity. Remarkably, Sal B reversed the expression of gene signatures related to the IL-2-STAT5 signaling pathway in vitro and in vivo. Sal B prolongs survival and inhibits lethal inflammation in SF mice through the IL-2-STAT5 axis. Our findings may inspire novel drug discovery efforts aimed at treating IPEX syndrome.


Assuntos
Autoimunidade , Benzofuranos , Interleucina-2 , Fator de Transcrição STAT5 , Transdução de Sinais , Linfócitos T Reguladores , Animais , Fator de Transcrição STAT5/metabolismo , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Benzofuranos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Interleucina-2/metabolismo , Autoimunidade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Masculino , Doenças Genéticas Ligadas ao Cromossomo X , Diabetes Mellitus Tipo 1/congênito , Diarreia , Doenças do Sistema Imunitário/congênito , Depsídeos
13.
Med Oncol ; 41(7): 170, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847902

RESUMO

Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.


Assuntos
Benzofuranos , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Estresse Oxidativo , PTEN Fosfo-Hidrolase , Transdução de Sinais , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Benzofuranos/farmacologia , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Depsídeos
14.
Ultrason Sonochem ; 108: 106967, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917596

RESUMO

The transformation of salvianolic acid B brought on by heat treatment recovery of ethanol eluent, which is a difficult problem in pharmaceutical technology, affects the purity of raw material when the medicinal raw material salvianolic acid B is purified by resin. Ultrasonic-assisted nanofiltration separation (UANS) was first employed to improve efficiency of resource utilization by regulating rejection and separating salvianolic acid B and rosmarinic acid from organic pharmaceutical wastewater. The rejection was related to three variables: ultrasonic power, pH, and ethanol concentration. But there were differences in the effects of variables on the rejections of salvianolic acid B and rosmarinic acid. The rejections of rosmarinic acid and salvianolic acid B showed a decreasing trend with an increase in ultrasonic power or a decrease in pH; however, when the concentration of ethanol was increased from 5 % to 35 %, the salvianolic acid B rejection increased from 84.96 % to 96.60 % and the rosmarinic acid rejection decreased from 35.09 % to 17.51 %. On the basis of response surface methodology (RSM), the optimal UANS parameters for solution conditions involving different ethanol concentrations are as follows: 10 % ethanol solution (ultrasonic power 500 W and pH 6.15), 20 % ethanol solution (ultrasonic power 500 W and pH 6.54), and 30 % ethanol solution (ultrasonic power 460 W and pH 6.34). The molecular proportions of salvianolic acid B were 10.75 %, 7.13 %, and 8.27 % in 10 %, 20 %, and 30 % ethanol wastewater, while the molecular proportions of rosmarinic acid were 40.52 %, 33.83 %, and 69.87 %, respectively. And the recoveries of salvianolic acid B in 10 %, 20 %, and 30 % ethanol wastewater were 93.56 %, 95.04 %, and 97.30 %, respectively, while the recoveries of rosmarinic acid were 3.19 %, 2.27 %, and 0.56 %. The molecular proportion and the rejection are correlated exponentially. In comparison with conventional nanofiltration separation (CNS), UANS is able to resolve the conflict between rosmarinic acid and salvianolic acid B in pharmaceutical wastewater, as well as enhance resource recycling and separation efficiency to prevent pollution of the environment from pharmaceutical wastewater. Experiments using UANS at different power intensities suggest that the ultrasonic at a power intensity of 46-50 W/L and the power density of 0.92-1.00 W/cm2 may resolve the separation conflict between rosmarinic acid and salvianolic acid B. This work suggests that UANS may be a significant advancement in the field of ultrasonic separation and has several potential uses in the water treatment industry.


Assuntos
Benzofuranos , Etanol , Filtração , Águas Residuárias , Águas Residuárias/química , Benzofuranos/isolamento & purificação , Etanol/química , Filtração/métodos , Nanotecnologia/métodos , Depsídeos/isolamento & purificação , Depsídeos/química , Ácido Rosmarínico , Concentração de Íons de Hidrogênio , Ondas Ultrassônicas , Cinamatos/isolamento & purificação , Cinamatos/química
15.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791194

RESUMO

MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5' RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza.


Assuntos
Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos , MicroRNAs , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , MicroRNAs/genética , Hidroxibenzoatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Genoma de Planta
16.
Phytomedicine ; 130: 155676, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820663

RESUMO

BACKGROUND: Prolonged exposure to sun radiation may result in harmful skin photoaging. Therefore, discovering novel anti-photoaging treatment modalities is critical. An active component isolated from Salvia miltiorrhiza (SM), Salvianolic acid B (Sal-B), is a robust antioxidant and anti-inflammatory agent. This investigation aimed to discover the therapeutic impact and pathways of salvianolic acid B for UVB-induced skin photoaging, an area that remains unexplored. METHODS: We conducted in vitro experiments on human dermal fibroblasts (HDFs) exposed to UVB radiation, assessing cellular senescence, superoxide dismutase (SOD) activity, cell viability, proliferation, migration, levels of reactive oxygen species (ROS), and mitochondrial health. The potential mechanism of Sal-B was analyzed using RNA sequencing, with further validation through Western blotting, PCR, and nuclear factor erythroid 2-related factor 2 (NRF2) silencing methods. In vivo, a model of skin photoaging induced by UVB in nude mice was employed. The collagen fiber levels were assessed utilizing hematoxylin and eosin (H&E), Masson, and Sirus red staining. Additionally, NRF2 and related gene and protein expression levels were identified utilizing PCR and Western blotting. RESULTS: Sal-B was found to significantly counteract photoaging in UVB-exposed skin fibroblasts, reducing aging-related decline in fibroblast proliferation and an increase in apoptosis. It was observed that Sal-B aids in protecting mitochondria from excessive ROS production by promoting NRF2 nuclear translocation. NRF2 knockdown experiments established its necessity for Sal-B's anti-photoaging effects. The in vivo studies also verified Sal-B's anti-photoaging efficacy, surpassing that of tretinoin (Retino-A). These outcomes offer novel insights into the contribution of Sal-B in developing clinical treatment modalities for UVB-induced photodamage in skin fibroblasts. CONCLUSION: In this investigation, we identified the Sal-B protective impact on the senescence of dermal fibroblasts and skin photoaging induced by radiation of UVB. The outcomes suggest Sal-B as a potential modulator of the NRF2 signaling pathway.


Assuntos
Benzofuranos , Fibroblastos , Fator 2 Relacionado a NF-E2 , Envelhecimento da Pele , Raios Ultravioleta , Animais , Humanos , Camundongos , Antioxidantes/farmacologia , Benzofuranos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Depsídeos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Camundongos Nus , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salvia miltiorrhiza/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Raios Ultravioleta/efeitos adversos
17.
Phytomedicine ; 130: 155553, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820664

RESUMO

INTRODUCTION: Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE: This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS: In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS: Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION: The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.


Assuntos
Benzofuranos , Caveolina 1 , Cicatrização , Peixe-Zebra , Animais , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/fisiologia , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Caveolina 1/metabolismo , Movimento Celular/efeitos dos fármacos , Depsídeos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo
18.
J Control Release ; 371: 1-15, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761856

RESUMO

Since phospholipids have an important effect on the size, surface potential and hardness of liposomes that decide their in vivo fate after inhalation, this research has systematically evaluated the effect of phospholipids on pulmonary drug delivery by liposomes. In this study, liposomes composed of neutral saturated/unsaturated phospholipids, anionic and cationic phospholipids were constructed to investigate how surface potential and the degree of saturation of fatty acid chains determined their mucus and epithelium permeability both in vitro and in vivo. Our results clearly indicated that liposomes composed of saturated neutral and anionic phospholipids possessed high stability and permeability, compared to that of liposomes composed of unsaturated phospholipids and cationic phospholipids. Furthermore, both in vivo imaging of fluorescence-labeled liposomes and biodistribution of salvianolic acid B (SAB) that encapsulated in liposomes were performed to estimate the effect of phospholipids on the lung exposure and retention of inhaled liposomes. Finally, inhaled SAB-loaded liposomes exhibited enhanced therapeutic effects in a bleomycin-induced idiopathic pulmonary fibrosis mice model via inhibition of inflammation and regulation on coagulation-fibrinolytic system. Such findings will be beneficial to the development of inhalable lipid-based nanodrug delivery systems for the treatment of respiratory diseases where inhalation is the preferred route of administration.


Assuntos
Benzofuranos , Fibrose Pulmonar Idiopática , Lipossomos , Camundongos Endogâmicos C57BL , Fosfolipídeos , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacocinética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fosfolipídeos/química , Fosfolipídeos/administração & dosagem , Administração por Inalação , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Distribuição Tecidual , Bleomicina/administração & dosagem , Camundongos , Humanos , Depsídeos
19.
Clin Cosmet Investig Dermatol ; 17: 791-804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616888

RESUMO

Background: Existing research links oxidative stress and inflammation to hair loss. Salvianolic acid B (SAB) is known for its anti-oxidative, anti-inflammatory, and other beneficial pharmacological properties. Objective: To assess the efficacy of SAB in modulating hair growth. Methods: In vivo experiments were conducted using C57BL/6 mice to evaluate the effects of SAB on hair and skin parameters. The study involved ex vivo analysis of human hair follicles (HFs) for hair shaft length and hair growth cycle assessment. In vitro, human dermal papilla cells (hDPCs) were cultured with SAB, and their proliferation, protection against H2O2-induced oxidative damage, and gene/protein expression alterations were examined using various analytical techniques, including Real-Time Cell Analysis (RTCA), DCFH-DA Assay, RNA-seq, and KEGG pathway analysis. Results: SAB treatment in mice significantly improved hair growth and vascularization by day 21. In human HFs, SAB extended hair shaft length and delayed the transition to the catagen phase. SAB-treated hDPCs showed a notable decrease in the expression of oxidation-antioxidation-related genes and proteins, including reduced phosphorylation levels of ERK and p38. Conclusion: The study indicates that SAB promotes hDPC proliferation and offers protection against oxidative stress, highlighting its potential as a therapeutic agent for enhancing hair growth and treating hair loss.

20.
Bioorg Chem ; 146: 107320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569323

RESUMO

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Assuntos
Interleucina-4 , Mastócitos , Camundongos , Animais , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Simulação de Acoplamento Molecular , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA