Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 194(Pt B): 115388, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595454

RESUMO

The influence of the phytoplankton community in the light absorption budget was quantified in coastal waters of the North region of the San Jorge Gulf (Argentinian Patagonia). The phytoplanktonic composition and their absorption spectra were determined. Nanoflagellates and diatoms were the dominant groups. The toxigenic dinoflagellate Dinophysis acuminata was recorded in all the sampling sites. The optical characterization of the particulate material showed that 60 % of the absorption at 443 nm and 88 % of absorption at 675 nm was due to phytoplankton. The contributions of phytoplankton to total absorption at 443 nm wavelengths reached 50 %. The absorption by chromophoric dissolved organic matter (CDOM) and non-algal particles (NAP) was predominant in turbulent waters (>60 %). This study shows the influence of submesoscale physical-biological interactions in the light absorption budget. The field absorption spectra of active optical components are of interest in the assessment and development of regional ocean color satellite algorithms.


Assuntos
Diatomáceas , Dinoflagellida , Fitoplâncton , Algoritmos , Matéria Orgânica Dissolvida
2.
Water Res ; 178: 115839, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353611

RESUMO

It has been difficult in satellite remote sensing to derive accurate water optical, biological, and biogeochemical products over high-altitude inland waters due to issues in satellite data processing (i.e., atmospheric correction). In this study, we demonstrate that accurate normalized water-leaving radiance spectra nLw(λ) can be derived for a high-altitude lake, Lake Tahoe, using improved Rayleigh radiance computations (Wang, M., Opt. Express, 24, 12414-12429, 2016) which accurately account for water surface altitude effects in the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system. Satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2018 are used to evaluate and validate satellite-derived nLw(λ) spectra, and to quantitatively characterize water properties in the lake. Results show that VIIRS-derived nLw(λ) spectra are quite comparable with those from the in situ measurements. Subsequent retrievals of water biological and biogeochemical products show that chlorophyll-a (Chl-a) concentration and Secchi depth (SD) are reasonably well-estimated, and captured normal seasonal variations in the lake, e.g., the annual highest Chl-a and SD normally occur in the winter while the lowest occur in the summer, which is consistent with in situ measurements. Interannual variability of these water quality parameters is also observed. In particular, Lake Tahoe experienced a significant environmental anomaly associated with an extreme weather condition event in 2017, showing considerably decreased nLw(λ) at the spectral bands of 410, 443, and 486 nm, and significantly reduced SD values in the entire lake. The low SD measurements from VIIRS are consistent with in situ observations. Following the event in the 2017-2018 winter, Lake Tahoe recovered and returned to its typical conditions in spring 2018.


Assuntos
Lagos , Água , Altitude , Cor , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA