Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 90(3): 777-790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141034

RESUMO

Superhydrophobic coatings with excellent self-cleaning performance have attracted significant concerns from researchers. Although various superhydrophobic coatings with prominent superhydrophobic properties have been fabricated, most developed coatings are still inadequate in pipeline scale inhibition applications. In this work, nano-silica (nano-SiO2) was modified by silane coupling of vinyltriethoxysilane (VETS) and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFTS) to prepare a superhydrophobic coating. Organosilicon of PFTS and VETS was grafted onto the surface of SiO2 for preparing the superhydrophobic coating with low surface energy, and the superhydrophobic coating was cured via poly(vinylidene fluoride) (PVDF). The results showed that the contact angle of the prepared silica-based superhydrophobic coating, denoted as VETS-PFTS@SiO2/PVDF, is 159.2°, exhibiting outstanding superhydrophobicity performance. Furthermore, the superhydrophobicity coating also showed satisfactory durability performance in 200 g load wear test after 50 cycles. Importantly, the superhydrophobic coating displayed promising mechanical durability, chemical stability performance, as well as maintained excellent superhydrophobic properties after being placed in water for 3 weeks, indicating the potential for long-term utilization. In the simulated scale inhibition test, it was found that the synthesized coating can also significantly decrease the deposition rate of CaCO3 and successfully enhance its scale inhibition performance.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Silanos , Dióxido de Silício , Silanos/química , Dióxido de Silício/química
2.
Int J Biol Macromol ; 262(Pt 2): 130106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346628

RESUMO

An eco-friendly antimicrobial sulfur quantum dot scale inhibitor (CMC-SQDs) synthesized using carboxymethyl cellulose (CMC) showed strong inhibition of calcium sulfate (CaSO4) at a concentration just below 1 mg/L, with an inhibition efficiency exceeding 99 %. However, the precise interaction process between CMC-SQDs and CaSO4 remains unclear. This article investigates the effectiveness of SQDs in inhibiting the formation of CaSO4 and calcium carbonate (CaCO3) scales. Through static scale inhibition tests, molecular dynamics simulations, and quantum chemical calculations, the study aims to elucidate the different impacts of CMC-SQDs on CaSO4 and CaCO3 scale formation. The research focuses on understanding the relationship between the structural activity of CMC-SQDs and their scale-inhibiting performance and delving into the underlying mechanisms of scale inhibition. The findings describe the role of SQDs in a water-based solution, acting as persistent "nanodusts" that interact with calcium (Ca2+) ions and sulfate ions. CMC forms complexes with Ca2+ ions, and the presence of SQDs enhances the van der Waals force, indirectly increasing the resistance of associated ions and the binding energy on the surface of precipitated gypsum. Conversely, SQDs exhibit weak surface stability and have minimal binding energy when interacting with calcite, leading to limited occupation of available adsorption sites.


Assuntos
Carbonato de Cálcio , Pontos Quânticos , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Carboximetilcelulose Sódica/química , Íons , Enxofre/química
3.
Materials (Basel) ; 16(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834653

RESUMO

Considerable efforts are made worldwide to reduce inorganic scale in reverse osmosis plants, boilers and heat exchangers, evaporators, industrial water systems, geothermal power plants and oilfield applications. These include the development of new environmentally friendly antiscalants and the improvement of conventional ones. The present report is dedicated to the unconventional application of spruce wood shavings in combination with polyacrylate (PAA-F1) in a model case of gypsum scale formation. The electrical conductivity of freshly prepared gypsum solutions with a saturation SI = 2.3 and a concentration of 0.05 mol·dm-3 was analyzed over time at 25°C. It is demonstrated that the small amounts of wood shavings (0.1% by mass) alone, after being in contact with CaCl2 and Na2SO4 stock solutions for 15 min, increase the induction time tind by 25 min relative to the blank experiment (tindblank). In the presence of PAA-F1 (0.1 mg·dm-3), the difference Δtind = tind - tindblank constitutes 110 min, whereas the sequential treatment of the stock solutions with the shavings followed by PAA-F1 injection gives Δtind = 205 min. The observed synergism is associated with the selective removal of colloidal Fe(OH)3solid and Al(OH)3solid nanoimpurities from the stock solutions via their sorption to the well-developed surface of wood. Wood shavings therefore represent a very promising and environmentally friendly material that can significantly improve the effectiveness of conventional antiscalants.

4.
Environ Sci Pollut Res Int ; 30(26): 69205-69220, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138126

RESUMO

In this study, a lactic acid bacterium, Enterococcus faecium, was found to prevent CaCO3 precipitation through its metabolism. On analysis of all stages of E. faecium growth, static jar tests demonstrated that stationary phase E. faecium broth possessed the highest inhibition efficiency of 97.3% at a 0.4% inoculation dosage, followed by the decline and log phases with efficiencies of 90.03% and 76.07%, respectively. Biomineralization experiments indicated that E. faecium fermented the substrate to produce organic acid, which resulted in modulation of the pH and alkalinity of the environment and thus inhibited CaCO3 precipitation. Surface characterization techniques indicated that the CaCO3 crystals precipitated by the E. faecium broth tended to be significantly distorted and formed other organogenic calcite crystals. The scale inhibition mechanisms were revealed by untargeted metabolomic analysis on log and stationary phase E. faecium broth. In total, 264 metabolites were detected, 28 of which were differential metabolites (VIP ≥ 1 and p < 0.05). Of these, 15 metabolites were upregulated in stationary phase broth, and 13 metabolites were downregulated in log phase broth. Metabolic pathway analysis suggested that improved glycolysis and the TCA cycle were the main reasons for enhancement of the antiscaling performance of E. faecium broth. These findings have significant implications for microbial metabolism-induced CaCO3 scale inhibition.


Assuntos
Enterococcus faecium , Enterococcus faecium/química , Metabolômica
5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834501

RESUMO

Equipment scaling leads to reduced production efficiency in a wide range of industrial applications worldwide. Various antiscaling agents are currently commonly used to mitigate this problem. However, irrespective of their long and successful application in water treatment technologies, little is known about the mechanisms of scale inhibition, particularly the localization of scale inhibitors on scale deposits. The lack of such knowledge is a limiting factor in the development of applications for antiscalants. Meanwhile, fluorescent fragments integrated into scale inhibitor molecules have provided a successful solution to the problem. The focus of this study is, therefore, on the synthesis and investigation of a novel fluorescent antiscalant: (2-(6-morpholino-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)yl)ethylazanediyl)bis(methylenephosphonic acid) (ADMP-F) which is an analog of the commercial antiscalant: aminotris(methylenephosphonic acid) (ATMP). ADMP-F has been found to effectively control the precipitation of CaCO3 and CaSO4 in solution and is a promising tracer for organophosphonate scale inhibitors. ADMP-F was compared with two other fluorescent antiscalants-polyacrylate (PAA-F1) and bisphosphonate (HEDP-F)-and was found to be highly effective: PAA-F1 > ADMP-F >> HEDP-F (CaCO3) and PAA-F1 > ADMP-F > HEDP-F (CaSO4·2H2O). The visualization of the antiscalants on the deposits provides unique information on their location and reveals differences in the "antiscalant-deposit" interactions for scale inhibitors of different natures. For these reasons, a number of important refinements to the mechanisms of scale inhibition are proposed.


Assuntos
Ácido Etidrônico , Purificação da Água
6.
J Environ Sci (China) ; 124: 901-914, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182193

RESUMO

Scale not only affects the taste and color of water, but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it. As a popular beverage, tea is rich many substances that have considerable potential for scale inhibition, including protein, tea polyphenols and organic acids. In this study, the effect of tea brewing on scale formation was explored. It was found that the proteins, catechins and organic acids in tea leaves could be released when the green tea was brewed in water with sufficient hardness and alkalinity. The tea-released protein was able to provide carboxyl groups to chelate with calcium ions (Ca2+), preventing the Ca2+ from reacting with the carbonate ions (CO32-). The B rings of catechins were another important structure in the complexation of Ca2+ and magnesium ions (Mg2+). The carboxyl and hydroxyl groups on the organic acids was able to form five-membered chelating rings with Ca2+ and Mg2+, resulting in a significant decrease in Ca2+ from 100.0 to 60.0 mg/L. Additionally, the hydrogen ions (H+) provided by the organic acids consumed and decreased the alkalinity of the water from 250.0 to 131.4 mg/L, leading to a remarkable reduction in pH from 8.93 to 7.73. It further prevented the bicarbonate (HCO3-) from producing CO32- when the water was heated. The reaction of the tea constituents with the hardness and alkalinity inhibited the formation of scale, leading to a significant decrease in turbidity from 10.6 to 1.4 NTU. Overall, this study provides information to help build towards an understanding of the scale inhibition properties of tea and the prospects of tea for anti-scaling in industrial applications.


Assuntos
Cálcio , Magnésio , Bicarbonatos , Prótons , Chá/química , Água
7.
J Colloid Interface Sci ; 633: 764-774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481427

RESUMO

The prevention of calcite aggregation and scaling remains a challenging problem in aqueous based systems and environmental science. Decades of research studies have proposed microscopic mechanisms of aggregation control, but experiments at the nanoscale and molecular level are rarely conducted. Here we show that the nanoscale topographic features of calcite during its aggregation depend significantly on the intermolecular and surface forces involved in this process. By measuring the forces between a calcite or silica particle and a calcite surface in aqueous solutions using atomic force microscopy, we found that higher solution pH and inhibitor concentration and lower salinity resulted in a system of stronger repulsion and weaker adhesion, which is favorable for reducing the possibility of calcite aggregation and surface deposition. Conflicting roles of Mg2+ in calcite aggregation prevention, being positive in acidic pH and negative in alkaline pH, were also observed. The nanoscale structural changes of calcite, visualized by atomic force microscopy or scanning electron microscopy, indicated a size dependence of aggregated and deposited calcite crystals on the calcite-calcite and calcite-silica interactions, respectively. The generalized framework of the calcite aggregation mechanism achieved in this work can be extended to other types of systems and provides a basis for investigating the anti-aggregation strategy of calcite from industrial and environmental perspectives.


Assuntos
Carbonato de Cálcio , Dióxido de Silício , Carbonato de Cálcio/química , Microscopia de Força Atômica/métodos , Dióxido de Silício/química , Água/química , Microscopia Eletrônica de Varredura
8.
Polymers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559800

RESUMO

Scale formation causes major losses in oil wells, related to production and equipment damages. Thus, it is important to develop effective materials to prevent scale formation and inhibit any additional formation. One known environmentally friendly material with promising performance for scale inhibition is polyepoxysuccinic acid (PESA). However, the performance and further development of any scale treatment chemical is highly affected by its electronic structure and behavior. Thus, this paper aims to obtain insights into the kinetics and thermodynamics of the chemical reactions during scale inhibition by investigating the geometrical and electronic structure of PESA. Density Functional Theory (B3LYP/6-31 g (d)-lanl2dz) was used to study the structure of PESA, considering different forms of PESA and their corresponding binding affinities and chemical behaviors. The scale is represented as FeII ions, and PESA is modeled as (n = 1, and 2). Three conditions of PESA were considered: the standard form, the form with a modified electron donating group (R- = CH3-), and ammonium salt of PESA (M+ = NH4+). The results showed that PESA has a high binding affinity to FeII, comparable to known chelating agents, with the highest binding affinity for ammonium salt of PESA with the CH3- donating group (-1530 kJ/mol). The molecular orbitals (MO), electron affinity (EA), and charge analysis further explained the findings. The HOMO-LUMO gap and EA results revealed the high reactivity and thermodynamic stability of all forms of PESA. In addition, the ammonium salt form of PESA with the electron donating group performs better, as it has a greater overall negative charge in the compounds. Furthermore, the NH4+ cationic group tends to lower the value of the HOMO orbital, which increases the inhibition performance of PESA.

9.
Membranes (Basel) ; 12(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36295761

RESUMO

Membrane scaling is a serious problem in electrodialysis. A widely used technique for controlling scale deposition in water treatment technologies is the application of antiscalants (AS). The present study reports on gypsum scale inhibition in electrodialysis cell by the two novel ASs: fluorescent-tagged bisphosphonate 1-hydroxy-7-(6-methoxy-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid), HEDP-F and fluorescein-tagged polyacrylate, PAA-F2 (molecular mass 4000 Da) monitored by chronopotentiometry and fluorescent microscopy. It was found that cation-exchange membrane MK-40 scaling is sufficiently reduced by both ASs, used in 10-6 mol·dm-3 concentrations. PAA-F2 at these concentrations was found to be more efficient than HEDP-F. At the same time, PAA-F2 reveals gypsum crystals' habit modification, while HEDP-F does not noticeably affect the crystal form of the deposit. The strong auto-luminescence of MK-40 hampers visualization of both PAA-F2 and HEDP-F on the membrane surface. Nevertheless, PAA-F2 is proved to localize partly on the surface of gypsum crystals as a molecular adsorption layer, and to change their crystal habit. Crystal surface coverage by PAA-F2 appears to be nonuniform. Alternatively, HEDP-F localizes on the surface of a deposit tentatively in the form of [Ca-HEDP-F]. The proposed mechanisms of action are formulated and discussed. The application of antiscalants in electrodialysis for membrane scaling mitigation is demonstrated to be very promising.

10.
Sci Total Environ ; 845: 157156, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803435

RESUMO

The formation of scales in a recirculating water system is a common problem in industrial water treatment; it seriously affects the production in various industries and pollutes the environment. Although conventional scale inhibition methods are effective, they are expensive and harm the environment. Herein, an advanced method is proposed to solve the scaling issue in recirculating cooling water systems using the superconducting high-gradient magnetic field (S-HGMF) treatment. The scale inhibition performance could be improved by changing the magnetic flux density, operation time, and flow rate. The results showed that S-HGMF could increase the number of hydrogen bonds in the recirculating cooling water, enhance molecular interaction, increase the thickness of the ion hydration shell, reduce the nucleation rate, stabilize the water quality, improve the solubility of scale-forming ions, and inhibit scale formation. The scale inhibition performance reached 8.10%. Interestingly, S-HGMF had a memory effect in that it could maintain the scale inhibition effect for some period after treatment completion. Moreover, S-HGMF changed the crystal structure of the scale and promoted the transformation of the scale to a metastable phase. Ultimately, calcite was transformed to aragonite to reduce the precipitation of hard scale (calcite), achieving the purpose of scale inhibition. As a physical method, the application of S-HGMF to inhibit scaling has great potential for industrial applications.


Assuntos
Purificação da Água , Carbonato de Cálcio/química , Purificação da Água/métodos
11.
Environ Sci Pollut Res Int ; 29(55): 82762-82771, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35752665

RESUMO

Polyaspartic acid is considered a green agent for the treatment of circulating cooling water. However, its chemosynthetic process is not green, as it requires significant amounts of energy and causes water pollution. In this work, we identified an analog of polyaspartic acid, namely polyglutamic acid (γ-PGA), which could be directly produced by Bacillus spp., and we explored its performance and scale inhibition mechanism as a scale inhibitor. We found that γ-PGA secreted by B. megaterium with a molecular weight of ~ 70 kDa showed poor scale inhibition, while the γ-PGA secreted by B. licheniformis with a molecular weight of ~ 15 kDa had a 26.87% higher efficiency compared to commercially available polyaspartic acid. The scale inhibition mechanism was explored using the γ-PGA material secreted by B. licheniformis. Fourier transform spectrometer, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy analysis demonstrated that the scale inhibition performance of γ-PGA was due to the combination of its functional groups and Ca2+, which affected the growth process of CaCO3 and inhibited the formation of CaCO3. This study provided deeper insight into scale inhibition performance related to the scale inhibition mechanism.


Assuntos
Bacillus , Bacillus/química , Ácido Poliglutâmico/química , Água , Peso Molecular
12.
J Colloid Interface Sci ; 618: 507-517, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35366478

RESUMO

HYPOTHESIS: It is hypothesized that the performance of a chemical inhibitor to interfere with the precipitation and scaling of calcite (calcium carbonate, CaCO3) is achieved through its chelating interaction with calcium ions. The effectiveness of a chemical inhibitor in removing existing scales from the mineral surfaces is proposed to rely on its ability to modify the calcite crystal structures. EXPERIMENTS: Bulk scaling tests and dynamic adsorption experiments using a quartz crystal microbalance with dissipation monitoring were conducted to systematically investigate the scaling behaviours (i.e., buildup and breakup processes) of calcite crystals, in the absence and presence of chemical inhibitors, that include polyacrylic acid, sodium hexametaphosphate, 2-phosphonobutane-1,2,4-tricarboxylic acid, and diethylenetriamine penta(methylene phosphonic acid). Scanning electron microscope imaging and thermodynamic characterization using isothermal titration calorimetry were further applied to reveal the surface interactions that contributed to the differences among the effects of the four additives. FINDINGS: The results indicate that sodium hexametaphosphate is most efficient in alleviating the amount of CaCO3 deposited by reducing the concentration of free Ca2+, and diethylenetriamine penta(methylene phosphonic acid) shows an outstanding ability to clean the mineral surface by destroying the ordered crystal layers of the scales so that they can be washed away with water. This work provides useful insights into the fundamental interactions of chemical inhibitors and calcite, with implications for the development of effective chemical solutions for anti-scaling and descaling applications.


Assuntos
Carbonato de Cálcio , Minerais , Adsorção , Carbonato de Cálcio/química , Íons , Soluções
13.
Membranes (Basel) ; 12(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35207115

RESUMO

Calcium carbonate scaling in reverse osmosis (RO) desalination process is studied in the presence of two novel fluorescent-tagged scale inhibitors 1,8-naphthalimide-tagged polyacrylate (PAA-F1) and 1-hydroxy-7-(6-methoxy-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid) (HEDP-F) by fluorescent microscopy (FM) and scanning electron microscopy (SEM). Both antiscalants diminished the mean size of calcite crystals relative to the blank experiment. The behavior and localization of HEDP-F and PAA-F1 during calcite scale formation on membrane surface was found to be significantly different from the distribution in similar RO experiments with gypsum, reported earlier. In the former case, both antiscalants are concentrated exactly on the surface of calcium carbonate crystals, while in the latter one they form their own phases (Ca-HEDP-F and Ca-PAA-F1) and are not detected on gypsum scale. The difference is interpreted in terms of interplay between background calcium concentration and sparingly soluble calcium salts' solubility. HEDP-F reveals slightly higher efficiency than PAA-F1 against calcite scale formation, while PAA-F exhibits a higher ability to change calcite morphology. It is demonstrated that there is a lack of correlation between antiscaling efficacy and ability of antiscalant to change calcium carbonate morphology in a particular case study. An application of fluorescent-tagged antiscalants in RO experiments provides a unique possibility to track the scale inhibitor molecules' localization during calcite scale formation. Fluorescent-tagged antiscalants are presumed to become a very powerful tool in membrane scaling inhibition studies.

14.
Water Res ; 186: 116334, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866932

RESUMO

Cooling circuits in many industrial sectors are faced with daily issues of scaling. One preventive treatment consists in injecting a polymer additive in the circuit to inhibit precipitation of calcium carbonate. Among the used additives, very few are "green" and the efficiency of new candidates are difficult to test directly in industrial conditions. The present study compared performance between two "green" polymer additives, polyaspartic acid (PASP) and polyepoxysuccinic acid (PESA), versus a traditional gold-standard, homopolymer of acrylic acid (HA) in a laboratory scale set-up designed to be representative of an industrial circuit. Results showed that HA and PASP are both inhibitors of calcium carbonate crystal growth. This inhibition resulted from adsorption of polymer additive molecules on the crystal surface, as confirmed by adsorption measurement. Under the same conditions, PESA additive, showed a high rate of calcium ion complexation and a very low inhibition rate. But, PESA was shown to be a nucleation delayer. Mixing PESA and PASP can gave nucleation retardation of about 19 h, which approximates the 24 h water residence time in industrial cooling circuits, as well as almost 90% calcium carbonate crystal growth inhibition. This synergy offers promising prospects for preventive scaling treatment.


Assuntos
Carbonato de Cálcio , Polímeros , Precipitação Química , Íons
15.
Water Res ; 186: 116323, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846384

RESUMO

This research work investigates the Zn2+, Cu2+ and Mg2+ inhibiting effects on CaCO3 precipitation. The results demonstrate a synergetic effect of the Cu2+-Zn2+-Mg2+ mixture by a long (infinite) induction time. The individual inhibition action of Cu2+, Zn2+ and Mg2+ is well-established, but it is much lower than the effect of the mixture. A dual mechanism is suggested, where the inhibition effect is attributed to the cation interaction with hydroxide anions (OH-) to form the corresponding CuOH+, ZnOH+ and MgOH+ hydrocomplexes. This, in return, prevents and delays the CaCO3 precipitation. The pH range plays a crucial role in the effect where Cu2+ prevents the precipitation below a pH of 7.5. Zn2+ reacts in the pH range of 7.5 - 8.8, while Mg2+ completes the synergy by inhibiting the precipitation at high pH values. The results indicate that the inhibition efficiency by Mg2+ is improved in the presence of both Cu2+ and Zn2+ ions. These predictions were verified by theoretical calculations of thermodynamic equilibria.


Assuntos
Carbonato de Cálcio , Zinco , Cobre , Concentração de Íons de Hidrogênio , Termodinâmica
16.
Water Res ; 183: 115985, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32619802

RESUMO

Reverse osmosis (RO) plays an important role in freshwater production. Mineral scaling is an inevitable problem in the RO desalination process. Various methods, including the pretreatment of feed water, the optimization of operational processes, the development of novel membrane materials, and the addition of antiscalants, have been developed to mitigate scale formation in RO systems. Among these methods, the addition of antiscalants is a relatively cost-effective and convenient technique for membrane scaling control. In the current work, various kinds of antiscalants, scale inhibition mechanisms, and their applications to RO membrane scaling control are reviewed. Weakness of existing antiscalants and challenge arising from their practical applications, such as membrane fouling caused by antiscalants, increased bacterial growth, dosing control, and the disposal of resultant concentrates, are also presented. To effectively alleviate scaling on RO membrane by using antiscalants, the development of novel, high-performance, and environment-friendly antiscalants on the basis of an in-depth study of the inhibition mechanisms and well-established structure-activity relationships is urgently necessary. The optimization of antiscalants and their combinations with other pretreatments in practical RO operations are essential in efficient scaling control.


Assuntos
Purificação da Água , Filtração , Membranas Artificiais , Osmose , Eliminação de Resíduos Líquidos , Água
17.
Materials (Basel) ; 12(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752368

RESUMO

This investigation determined a feasible route to prepare hyperbranched polyesters involving citric acid (CA) and glycerol (GLC) monomers (CA-co-GLC) using a thermal polycondensation method. The synthesized copolymer was characterized using Fourier transform infrared spectroscopy (FT-IR), carbon-13 nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The ability of CA-co-GLC to inhibit deposition of inorganic scales such as calcium carbonate was investigated under varying temperature and pH medium. The evaluation of inhibition efficiency (IE) was conducted using the static scale inhibition method. The mechanism of the inhibitor's action was investigated via growth solution analysis, measurement conductivity, and analysis of CaCO3 using FT-IR and scanning electron microscopy. The results obtained showed that the CA-co-GLC had good IE at an elevated temperature reaching 75% at 100 °C, pH 7.5, and 10 ppm copolymer dose. Using the same dose, the IE reached 66% at 50 °C and pH 10. The CA-co-GLC did not chelate Ca2+ in water, but led to a change in polymorphism, making it brittle and able to slip easily from the surface. Its action principally prevented the adhesion of calcium carbonate onto the surface.

18.
Materials (Basel) ; 12(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195604

RESUMO

A novel corrosion and scale inhibitor (TPP) containing tobacco stem extract (TSE), polyepoxysuccinic acid (PESA), and polyaspartic acid (PASP) was obtained by the optimal proportion of the orthogonal test. The anticorrosion effect of TPP for carbon steel was researched by static weight-loss method, on-line simulated dynamic test, electrochemical measurement, and scanning electron microscopy (SEM). The results showed that TPP could protect carbon steel efficiently with a maximal corrosion inhibition rate of 85.7% and it was a mixed-type corrosion inhibitor, mainly exhibiting cathode suppression capacity. Simultaneously, the results of calcium carbonate deposition experiment indicated that the scale inhibition rate of TPP was up to 100%.

19.
Nanomaterials (Basel) ; 9(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717114

RESUMO

Nanofluids have great application prospects in industrial heat exchange systems because they can significantly improve the heat and mass transfer efficiency. However, the presence of nanoparticles in the fluid might also affect the formation and attachment of inorganic scales, such as calcium carbonate, on the heat exchange surface. The effects of carbon nanoparticles on the crystallization of calcium carbonate in aqueous solution were studied by the scale inhibition test, solution analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results showed that carbon nanoparticles had an excellent surface scale inhibition performance for calcium carbonate, which could effectively prevent the adhesion of scale on the heat exchange surface. The carbon nanoparticles did not affect the solubility of calcium carbonate in water, but changed the crystal form of the precipitated calcium carbonate, making it difficult to adsorb on the heat exchange surface and achieving a surface scale inhibition effect. Carbon nanofluids effectively inhibit the adhesion of calcium carbonate to heat exchange surfaces.

20.
Water Res ; 141: 86-95, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778068

RESUMO

The development of phosphorus-free and biodegradable scale inhibitors has been paid considerable attention. Two series of starch-graft-poly(acrylic acid) (St-g-PAA) samples with different grafting ratios and grafted-chain distributions, that is, the number and length of grafted PAA chains on the starch backbone, were designed and prepared in this study. Fourier transform infrared and 1H nuclear magnetic resonance spectra were used to further characterize the molecular structures of the St-g-PAAs. In addition to dose, the effects of the structural morphologies of St-g-PAA, namely, grafting ratio and grafted-chain distribution, on the scale-inhibition performance against calcium carbonate were investigated systematically. Structural morphology significantly influenced the scale-inhibition performance of St-g-PAA. St-g-PAA with relatively low grafting ratio (≤97%) displayed better scale-inhibition effect than samples with similar grafted-chain distributions. Meanwhile, under the similar grafting ratios, samples with higher number of branched chains with shorter grafted chains displayed better antiscaling performance. Thus, higher scale-inhibition rate and lower corresponding optimal dose were obtained. Different scale-inhibition mechanisms were involved in the effects of the structural morphology. These mechanisms were investigated in detail from the molecular levels using scanning electron microscopy and X-ray diffraction.


Assuntos
Resinas Acrílicas/química , Amido/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Purificação da Água/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA