RESUMO
Injectable hydrogels, which are polymeric materials that are characterized by their ability to be injected in a liquid form into cavities and subsequently undergo in situ solidification, have garnered significant attention. These materials are extensively used in a range of biomedical applications. This study synthesized several injectable composite hydrogels through the mild Schiff base reaction while imposing different concentrations of quaternary ammonium chitosan and oxidized pullulan. Subsequent characterizations revealed a consistent and coherent porous structure within the hydrogels with smooth inner walls. The hydrogels were also determined to possess good adhesion, mechanical properties, self-healing ability, and injectability. Furthermore, antimicrobial tests against Escherichia coli and Staphylococcus aureus demonstrated antibacterial properties, which improved with increasing concentrations of quaternary ammonium chitosan. Co-culturing with skin fibroblasts demonstrated that the injectable hydrogels exhibited favourable biocompatibility and the capacity to boost cellular activity, thus underscoring its potential for use in biomedical applications.
RESUMO
A series of isostructural early actinide AnIV complexes was synthesized in order to investigate the influence of a conjugated framework in the ligand backbone on An bonding. Therefore, the AnIV complexes [An(pyrophen)2] (An = Th, U, Np, and Pu) with the pure N-donor ligand bis(2-pyrrolecarbonylaldehyde)-o-phenylenediamine referred to as pyrophen, were synthesized and characterized. Solid state analysis via single-crystal X-ray diffraction (SC-XRD) reveals two sets of ligands binding in an almost orthogonal arrangement to the actinide center. For the larger actinides Th and U, the coordination sphere allows for additional coordination by a solvent molecule. Nuclear magnetic resonance spectroscopy (NMR) studies show the presence of highly symmetrical complexes in solution in good agreement with the solvent-free solid structures. While SC-XRD suggests mainly ionic binding, an analysis of paramagnetic NMR contributions and quantum chemical bond analysis hint towards significant covalency in the U, Np, and Pu compounds. This series of An complexes allowed for a thorough structural and theoretical comparison of a conjugated system to a closely related N-donor ligand (pyren)[1], as well as to the mixed N,O Schiff base ligands salophen (conjugated) and salen (non-conjugated).
RESUMO
Three dinuclear zinc(II) acetate complexes of the general formula [Zn{Ln}(AcO)]2, namely, di-µ-acetato-κ4O:O'-bis[({2-[(pyridin-2-ylmethylidene)amino]phenyl}sulfanido-κ3N,N',S)zinc(II)], [Zn2(C12H9N2S)2(C2H3O2)2] (n = 1), 4, µ-acetato-1:2κ2O:O'-acetato-2κO-[µ-(2-{[1-(pyridin-2-yl)ethylidene]amino}phenyl)sulfanido-1κS:2κ3N,N',S][(2-{[1-(pyridin-2-yl)ethylidene]amino}phenyl)sulfanido-1κ3N,N',S]dizinc(II), [Zn2(C13H11N2S)2(C2H3O2)2] (n = 2), 5, and µ-acetato-1:2κ2O:O'-acetato-2κO-[µ-(2-{[phenyl(pyridin-2-yl)methylidene]amino}phenyl)sulfanido-1κS:2κ3N,N',S][(2-{[phenyl(pyridin-2-yl)methylidene]amino}phenyl)sulfanido-1κ3N,N',S]dizinc(II)-bis(2-aminophenyl) disulfide (2/1), [Zn2(C18H13N2S)2(C2H3O2)2]·0.5C12H12N2S2 (n = 3), 6·0.5(2-APS)2, were obtained from the reaction of 2-R-(pyridin-2-yl)benzothiazoline precursors (R = H, 1; R = Me, 2; R = Ph, 3) with zinc acetate dihydrate in a 1:1 ratio. All the complexes crystallized as dinuclear species and complex 6 cocrystallized with one molecule of bis(2-aminophenyl) disulfide (2-APS)2. The anionic Schiff base ligands {Ln}- displayed a κ2N,κS-tridentate coordination mode with the formation of two five-membered chelate rings. In 4, 5 and 6·0.5(2-APS)2, both ZnII ions are pentacoordinated and the coordination sphere of 4 was different with respect to those in 5 and 6·0.5(2-APS)2. For 4, the X-ray diffraction study showed a dinuclear complex containing two bridging acetate ligands linked to both ZnII ions. For 5 and 6·0.5(2-APS)2, the dinuclear complexes displayed one bridging acetate ligand linked to both ZnII ions, where the first ZnII ion includes a dative bond with one S atom from an adjacent anionic Schiff base {Ln}-, while the second ZnII ion is coordinated to one terminal acetate ligand. In each dinuclear complex, the geometry is the same for both ZnII metal centres. The local geometry of the ZnII cation in 4 is halfway between trigonal bipyramidal and square pyramidal local geometries; in 5 and 6, the local geometries are described as distorted square pyramidal. Hirshfeld surface analysis of 5 and 6 showed the predominance of H...H interactions, as well as the contribution of C-H...C, C-H...O and C-H...S noncovalent interactions to the cohesion of the crystalline network of the ZnII complexes.
RESUMO
A fluorescent probe derived from purine with Schiff base moiety was developed for the recognization of glyphosate and mesotrione. The detected glyphosate and mesotrione can lead to the dissociation of the Schiff base probe to enhance the fluorescence via a turn-off PET process. Mechanism study revealed that the synergistic effect of the phosphoric acid and the secondary amine moieties in glyphosate results in the bond cleavage of the Schiff base probe. Quantitative measurements of glyphosate and mesotrione were achieved with the detection limits of 17.2 nM and 484.32 nM, respectively. Meanwhile, the detection of glyphosate pesticide in real samples and cells was also conducted, demonstrating the good practicality and cytocompatibility of the probe.
RESUMO
Aim: Breast cancer is the most recurring cancer among females and is being diagnosed as a major cause of death among women.Materials & methods: Levosulpiride Schiff base derivatives were synthesized and analyzed by physical and spectral (FTIR, 1H-NMR, 13C-NMR) analysis. MTT assay against MCF-7 (human breast cancer cell line), scavenging activity and Molecular docking against receptors 1M17, 3PP0, 3IOK and 4KIK along ADME pharmacokinetic studies were performed.Results & conclusion: L1 and L3 synthesized derivatives have revealed better percent cell viability and inhibitory concentration (IC50) with scavenging activity as of the parent compound. L1, L3 and L9 revealed significant docking scores compared with standard drugs. Most of the derivatives showed strong pharmacokinetic profiles while no drug crossed blood-brain barrier. The newly synthesized L1 and L3 levosulpiride-derived compounds have demonstrated promising anticancer properties against breast cancer cells.
[Box: see text].
RESUMO
PURPOSE: Breast cancer is a significant global health concern, and researchers strive to enhance radiotherapy outcomes while minimizing the side effects. Schiff Base Iron (III) Complexes are one of the prospective elements that can be used as radiosensitizer or radioprotective agents in cancer radiotherapy. This study investigates the potential effects of Schiff base (ligand 2; L2) with Fe(III) in MCF-7 breast cancer cells under clinical radiotherapy treatment. METHODS: The effects of the Schiff Base Iron (III) Complexes were measured using clonogenic assay with MCF-7 breast cancer cells. The cells were irradiated with megavoltage 6 MV photon, 6 MeV electron and high dose rate (HDR) brachytherapy with 192Ir source at different doses. Intercellular localization of Fe(III)-L2 complexes and antioxidant activities were also investigated. RESULTS: The Fe(III)-L2 complexes were observed to be internalized by cellular nuclei without any effects on the cells. Interestingly, the Fe(III)-L2 complexes indicate radioprotective effects which provide intriguing insight towards application of metal ions complexes as radioprotector in cancer radiotherapy. The Fe(III)-L2 complexes also exhibit scavenging activities of free radical which further proved the antioxidative properties and radioprotective effects. CONCLUSION: The Fe(III)-L2 complexes show the radioprotective effects and antioxidant properties in MCF-7 cells, particularly for HDR brachytherapy. The findings suggest potential applications of the Fe(III)-L2 complexes as radioprotector agents in clinical radiotherapy.
RESUMO
The 2,4-dinitrophenylhydrazine based Schiff base (L) acts as an effective fluorescence sensor for the selective detection of maleic acid. The detection limit of L towards maleic acid is observed to be 1.29 × 10-7 M. A 1:1 binding stoichiometry between L and maleic acid was obtained using Bensi-Hilderbrand method. The binding constant (Ka) was measured to be 5.17 × 106 M-1. The sensing behavior of L was confirmed through analysis using FT-IR, DLS and SEM analysis, alongside DFT calculations. Theoretical assessments clearly suggest that the L's mono-protonation and complexation in the solvent medium are the primary mechanisms in the sensing process. Additionally, L is used to imaging the maleic acid in living cells, demonstrating its potential biological uses. In addition, recognition of maleic acid in food additives was reported.
RESUMO
Ca2+ ion as a second messenger in signaling pathway plays many vital roles in many biological phenomena. Thus, it is of significance for developing effective probes to detect Ca2+ ion specifically. Herein, a new Schiff base fluorescent probe FPH, fluorescein monoaldehyde (2-aminomethylpyridine) hydrazone, was designed and synthesized to identify Ca2+ in DMSO aqueous solution. The probe FPH revealed significant responses to Ca2+ with a fluorescence enhancement at 540 nm, exhibiting an evident fluorescence change from ultraweak luminescence to bright green. Otherwise, the FPH displayed a good linear range of 0.67 × 10-6 to 3.33 × 10-6 mol/L with a lower detection limit at 7.02 × 10-8 mol/L. The probe FPH were further successfully utilized to detect Ca2+ in living cells by an increased bright green fluorescence.
Assuntos
Cálcio , Fluoresceína , Corantes Fluorescentes , Cálcio/análise , Cálcio/química , Cátions Bivalentes/química , Bases de Schiff/química , Corantes Fluorescentes/química , Humanos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Fluoresceína/química , Hidrazonas/química , Estrutura Molecular , Sobrevivência Celular , Limite de DetecçãoRESUMO
Solid supported catalysts have several synthetic applications. Herein, finely ground eggshells were used as a solid support for the preparation of transition metal (Ni, Zn, Cu, Sn and Co) based catalysts to synthesize 2,4-dinitrophenylhydrazone (3) and dihydropyrimidinones (7 and 8). The effect of catalyst load, time and temperature on product yield was studied. Box Behnken Model was employed, and three predictors named catalyst amount (A), reaction time (B), and reaction temperature (C) were used to find the correlation of the predictors with the yield. Second order polynomial equation was used to estimate the effects of these factors. According to the statistical model, about 12% increase in yield was observed as a result of one-unit increase in reaction time while all other terms were kept constant. The values of S (18.1616) and R2 (71.2%) indicate that the statistical model gave an adequate fit to data. Quadratic model for the response surface was used for the analysis of variance (ANOVA) results, the larger F-values, and smaller p-values indicated that the predictors are in good agreement. The linear model terms of predictors were found to be significantly effective for yield (P < 0.05). The response surface and contour plots were also in agreement with the predicted model.
RESUMO
New azo Schiff base disperse dyes based on a chromene moiety were synthesized by reacting (2-amino-7-hydroxy-4-(4-methoxyphenyl)-4 H-chromene-3 carbonitrile) and(2-amino-4-(3,4-dimethoxyphenyl)-7-hydroxy-4 H-chromene-3-carbonitrile), with vanillin and ninhydrin, producing new chromene Schiff base derivatives, which in turn were coupled with 2-chloro-4-nitroaniline diazonium salt to give new 4 azo disperse dyes (1-4). The structures of the prepared dyes were confirmed using elemental analysis, 1HNMR spectroscopy, mass spectrometry, and IR. The synthesized dyes were applied to polyester and nylon fabrics using different dyeing techniques: high temperature- high pressure, and ultrasonic dyeing methods. The highest K/S values for all investigated dyes were achieved usinga high temperature-high pressure dyeing technique. Also, the color reflectance of all synthesized dyes with different dyeing shades (1%, 2%, and 3%) was obtained. The fastness properties of the dyed samples using the investigated dyes showed good color fastness toward light, washing, rubbing, and perspiration fastness. The presence of a chromene moiety and Schiff base in the investigated dyes promotes a higher antimicrobial activity on nylon and polyester fabrics against all tested bacteria (E. coli gram-negative and Staphylococcus aureus gram-positive) and two fungi, Aspergillus Niger and Candida albicans.
Assuntos
Anti-Infecciosos , Compostos Azo , Benzopiranos , Corantes , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Corantes/química , Corantes/síntese química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/síntese química , Benzopiranos/química , Benzopiranos/farmacologia , Benzopiranos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Têxteis , Testes de Sensibilidade MicrobianaRESUMO
Epoxides are class of cyclic ether and have been extensively used in petrochemicals and pharmaceuticals industries as raw materials. Due to this reasons, development of the synthetic strategy of epoxides are getting enormous interest among the research chemists. In terms of "development of the synthetic strategy", the use of a catalyst, especially, Schiff base-based complex is of potential interest due to alternative easy routes and significant advances in metal-mediated pathways giving rise to diverse degree of substrate-reagent interactions. In addition, the synthetic strategy that follows the 12 principles of green chemistry, particularly (i) reduce the use of organic solvent, especially toxic solvents, and (ii) increasing the use of catalysts to obtain selective and quick processes in terms of atom economy, are of great attention now a days. The present review encompasses the Schiff base-based molybdenum complexes as green catalyst in the epoxidation reaction. Molybdenum complexes have grown interest owing to lower cost, environmental protection and commercialization as well as its abundance in different metalloenzymes. On the other hand, molybdenum complexes speed up the O-O bond break of tert-butylhydroperoxide (TBHP); as a result, it accelerates the oxygen transfer process from TBHP to the olefin. This review mainly focused on the catalytic activity of molybdenum-based Schiff base complexes for the epoxidation reaction in water/solvent free condition.
Assuntos
Complexos de Coordenação , Compostos de Epóxi , Química Verde , Molibdênio , Bases de Schiff , Bases de Schiff/química , Catálise , Molibdênio/química , Compostos de Epóxi/química , Complexos de Coordenação/químicaRESUMO
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking infections in intracellular and in vivo systems, which requires drug molecules with emissive potential, specifically in the low-energy region. This study comprises the synthesis of a Schiff base ligand and its selected transition metals to evaluate their UV/fluorescence properties, inhibitory activity against urease, and molecular docking. Screening of the symmetrical cage-like ligand and its metal complexes with various eco-friendly transition metals revealed significant urease inhibition potential. The IC50 value of the ligand for urease inhibition was 21.80 ± 1.88 µM, comparable to that of thiourea. Notably, upon coordination with transition metals, the ligand-nickel and ligand-copper complexes exhibited even greater potency than the reference compound, with IC50 values of 11.8 ± 1.14 and 9.31 ± 1.31 µM, respectively. The ligand-cobalt complex exhibited an enzyme inhibitory potential comparable with thiourea, while the zinc and iron complexes demonstrated the least activity, which might be due to weaker interactions with the investigated protein. Meanwhile, all the metal complexes demonstrated a pronounced optical response, which could be utilized for fluorescence-guided targeted drug delivery applications in the future. Molecular docking analysis and IC50 values from in vitro urease inhibition screening showed a trend of increasing activity from compounds 7d to 7c to 7b. Enzyme kinetics studies using the Lineweaver-Burk plot indicated mixed-type inhibition against 7c and non-competitive inhibition against 7d.
Assuntos
Complexos de Coordenação , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Bases de Schiff , Urease , Bases de Schiff/química , Urease/antagonistas & inibidores , Urease/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Ligantes , HumanosRESUMO
Harnessing biocompatibility and magnetic separability a Chitosan Schiff base-modified ferrite is an innovative approach for addressing the issue of environmental pollution. This study aims to use a new visible light-activated photocatalyst made of cobalt ferrite (CoFe) anchored with Chitosan Schiff Base (CSB) to examine Rhodamine B (RhB) photodegradation. CSB@CoFe composite was synthesized using hydrothermal and sol-gel methods. This modified CSB composite and oxygen vacancies (OVs) have been proven by X-ray photoelectron spectroscopy, experimental calculations, and radical capture tests. The process of oxidative degradation is facilitated by radicals such as hydroxyl (OHâ¢) and superoxide (O2â¢-), as evidenced by research utilizing reactive species capture. The CSB@CoFe photocatalyst degraded 94.5â¯% of Rhodamine B (RhB, 50â¯mg/L) in 60â¯min at pHâ¯7 and 1.0â¯g/L. The CSB@CoFe heterostructure outperformed CSB against Gram-positive and Gram-negative bacteria. The photocatalyst exhibited exceptional stability across the five cycles. This study shows CSB@CoFe's persistent photocatalytic ability to degrade hazardous pollutants and act as an antimicrobial. It employs visible light to solve environmental issues positively.
RESUMO
In this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis. The fluorescence quenching emission was observed at 343 nm, upon addition of L to the buffer solution of BSA. The binding between BSA and ligand is static in nature using fluorescence quenching emission. The thermodynamic parameters were calculated from the temperature-dependent binding constants (i.e., ∆H = -0.318 kcal/mol, ∆G = -7.857 kcal/mol and ∆S = 0.023 kcal/mol), which indicated that the protein-ligand complex formation between L and BSA is mainly due to the electrostatic interactions. The experimental and theoretical results showed excellent agreement with respect to the mechanism of binding and binding constants. The molecular docking and molecular dynamic analysis experiments were performed to establish the interaction between protein and ligand.
RESUMO
Recently, sensors constructed on the basis of hydrogel are playing a major role in health detection such as motion detection and breathing monitoring. However, the common hydrogels have poor mechanical properties, insufficient adhesion and complex preparation processes, which hinder the further use of such sensors. In this paper, the conductive hydrogel (P(AA-UH)-OGG-CS/NiCl2) composed of acrylic acid (AA), oxidized guar gum (OGG) and chitosan (CS) was prepared at room temperature through the dynamic redox reaction of nickel chloride (NiCl2) and urushiol (UH). In detail, the reduction group (phenolic hydroxyl) of UH and Ni2+/Ni3+ pair form a semi-quinone/quinone redox dynamic cycle system, allowing the hydrogel to quickly gel at room temperature for 3 min. The catechol group in UH also promotes the hydrogel to have a superior adhesion strength of 25.23 kPa to pig skin and a strong repeated adhesion performance. In addition, the dynamic Schiff base bond created by the interaction of OGG and CS elevated the tensile stress of the hydrogel to 67.54 kPa. After the hydrogel is assembled into the sensor, it has high sensitivity and high stability to different strains, and has great application prospects in the field of actual human health monitoring.
RESUMO
In this study, we introduce a novel indole-containing pyridine-based Schiff base, (E)-2-({[bis(pyridin-2-yl)methylidene]hydrazin-1-ylidene}methyl)-1H-indole, C20H15N5 (2-DPHI), and its cadmium(II) complex poly[[2-({[bis(pyridin-2-yl)methylidene]hydrazin-1-ylidene}methyl)-1H-indole]di-µ-chlorido-cadmium(II)], [CdCl2(C20H15N5)]n (pCd2), as potential anticancer agents. The Schiff base was synthesized by reacting dipyridylmethanone hydrazone with indole-2-formaldehyde, while the cadmium complex was prepared by combining CdCl2 and 2-DPHI in methanol at room temperature. Both compounds were evaluated for their cytotoxicity against three human cancer cell lines (A375, A549 and HeLa) and a normal cell line (HFF-1). The ligand 2-DPHI exhibited notable antitumour activity, with an IC50 value of 12.22â µM against A375 and 15.17â µM against A549 after 48â h, while the pCd2 complex showed an even stronger inhibition of A375 cells, with an IC50 value of 4.88â µM, outperforming both 2-DPHI and CdCl2. Both compounds demonstrated lower toxicity towards normal cells compared to cancer cells. The structures of 2-DPHI and pCd2 were fully characterized using single-crystal X-ray diffraction, elemental analysis, high-resolution mass spectrometry and FT-IR, 1H NMR, 13C NMR and UV-Vis spectroscopy.
RESUMO
Imidazole moieties exhibit a broad range of biological activities, including analgesic, anti-depressant, anticancer, anti-fungal, anti-tubercular, anti-inflammatory, antimicrobial, antiviral, and antifungal properties. In this study, we explored the use of Schiff base for the synthesis of new imidazole derivatives as anti-inflammatory and pain-relieving agents. A series of eight novel imidazole analogues (2a-h) were prepared in three steps with excellent yields. All compounds were characterized using IR, NMR, and mass spectral data. Their analgesic and anti-inflammatory activities were evaluated using hot plate and paw oedema methods. Compound 2 g (1-(2,3-dichlorophenyl)-2-(3-nitrophenyl)-4,5-diphenyl-1H-imidazole) showed significant analgesic activity (89% at 100 mg/kg b.w.), while compounds 2a (2-(2,6-dichlorophenyl)-1-(4-ethoxyphenyl)-4,5-diphenyl-1H-imidazole) and 2b (2-(2,3-dichlorophenyl)-1-(2-chlorophenyl)-4,5-diphenyl-1H-imidazole) exhibited good anti-inflammatory activity (100% at 100 mg/kg b.w.), comparable to diclofenac salt (100% at 50 mg/kg b.w.). Molecular docking studies were conducted using Schrödinger software version 2021-2, employing the OPLS4 force field for both receptor and ligand preparation. The results were visualized using molecular visualization software such as PyMOL. These studies revealed that compound 2g exhibited the highest binding affinity with the COX-2 receptor (-5.516 kcal/mol). Compound 2g formed three conventional hydrogen bonds with residues GLN-242 (bond length: 2.3 Å) and ARG-343 (bond lengths: 2.2 Å & 2.4 Å). This binding affinity was comparable to that of Diclofenac salt, which showed the highest binding affinity of -5.627 kcal/mol with the COX-2 receptor. Diclofenac salt formed two conventional hydrogen bonds with the residues ARG-344 (bond length: 2.0 Å) and TRP-140 (bond length: 1.7 Å). Later, molecular dynamic simulations confirmed the stable binding affinity of compound 2g with the protein. Furthermore, other compounds also demonstrated potential binding to the receptor-binding pocket region. The anti-inflammatory potential of the synthesized compounds was evaluated using the carrageenan-induced rat hind paw oedema model, while the analgesic potential was assessed using the hot plate method. These evaluations were conducted in comparison with Diclofenac sodium, serving as the standard compound. However, compound 2g stood out for its superior analgesic activity, as confirmed by in-vivo examination. These findings suggest that these novel imidazole derivatives have potential as anti-inflammatory and analgesic agents.
Assuntos
Analgésicos , Anti-Inflamatórios , Desenho de Fármacos , Imidazóis , Simulação de Acoplamento Molecular , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Edema/tratamento farmacológico , Edema/induzido quimicamente , Camundongos , Ciclo-Oxigenase 2/metabolismo , Ratos , Masculino , Relação Estrutura-Atividade , Dor/tratamento farmacológicoRESUMO
The research investigates the cytotoxic effects of the stable NH-form of a resorcinol-based Schiff base (HL) and its metal complexes (Zn(II), Cd(II), Cu(II), Ni(II)) on MCF-7 breast cancer cells. The structural characterization was conducted utilizing diverse analytical techniques, including mass spectrometry, elemental analysis, molar conductance, magnetic moment, UV-Vis, IR and ESR. The crystalline state analysis of HL through X-ray crystallography disclosed a hybrid structure comprising two canonical forms, specifically the quinoid and zwitterion, that contribute to resonance and diverse interactions, resulting in the development of a three-dimensional form. NMR, IR and ESR analyses showed that the HL was bidentate, using the oxygen of the hydroxyl and the nitrogen atom of azomethine, bonded to the metal center during complexation. The study explored the cytotoxic effects of HL and the various metal complexes on MCF-7 human breast cancer cells. All complexes display significant cytotoxicity (IC50 < 38.37 µM). The activity of the complexes was greater than that of the free ligand, with the Cu(II) complex followed by Zn(II) demonstrated superior cytotoxicity compared to Cd(II), and Ni(II) complexes. Notably, the Cu(II) and Zn(II) complex exhibited approximately 13.2 and 12.9 times greater cytotoxicity than the 5-F Uracil (5-FU) cancer drug. An MTT assay corroborated the antiproliferative activity. The molecular docking study has been performed for all compounds with the aromatase cytochrome P450 receptor protein associated with breast cancer (PDB code = 3eqm). ADME drug likeness model has been done.
RESUMO
In this paper, four new mono-nuclear Ni(II), Pd(II), Pt(II) and Zn(II) complexes were prepared by using a bi-dentate Schiff base ligand, (E)-2-(((4-bromo-2,6-dichlorophenyl)imino)methyl)-5-chlorophenol (BrcOH), with bivalent ions in a methanol and distil water mixture as solvent in presence of NaOH as base. The structures of the prepared compounds were characterized by spectroscopic techniques (IR and 1H NMR), CHN analysis, and molar conductivity. The M(II) (Ni, Pd and Pt) ions are four-coordinated by a bi-dentate N2O2 donor ligand, forming square planar geometry, whereas the Zn(II) is coordinated as a tetrahedral geometry. The newly synthesized compounds, which include the Schiff base ligand and its complexes, underwent antibacterial screening against E. coli and S. aureus. The results demonstrated a remarkable and noteworthy biological activity of these compounds against these pathogenic bacterial strains. Different binding energies showed good correlation, with Pd showing the strongest binding. Small energy differences indicated high reactivity, with Ni and Pd complexes being the most reactive. Electrophilicity index exhibited electron-accepting properties, with Zn showing the highest reactivity. The dipole moments showed polarity and charge separation, with Pt having the highest polarity. We evaluated the pharmacokinetic properties (ADME) of a ligand and its metal complexes using the Swiss ADME website. The results of the in-silico prediction of physicochemical properties revealed that ten compounds in total adhered to Lipinski's rule.
RESUMO
Conductive gels have been extensively explored in the field of wearable electronics due to their excellent flexibility and deformability. Traditional gels constructed from synthetic networks pose risks to biosecurity due to residual monomers like acrylamide, while pure biological hydrogels are plagued by inadequate mechanical performance. This study explores an innovative strategy, employing a dual-network (DN) system with purely biological components, as a superior alternative to conventional synthetic networks. By integrating gelatin and chitosan, two natural polymers with inherent biocompatibility and advantageous biomedical properties, this approach successfully avoids the toxic risk of synthetic polymers. By utilizing emodin, a natural extract from Rheum officinale, as a cross-linking agent for chitosan by Schiff base reactions, and Hofmeister effect of gelatin induced by sodium carbonate, the DN gelatin/chitosan/emodin organohydrogels achieve ultrahigh tensile strength (up to 9.45 MPa), tunable moduli (ranging from 0.07 to 3.42 MPa), excellent toughness (â¼9.64 MJ/m3), and high ionic conductivity (7.63 mS/cm). Remarkably, these conductive organohydrogels also exhibit high sensitivity (gauge factor up to 1.5) and ultrahigh linearity (R2 up to 0.9995), making them promising candidates for soft human-motion sensors capable of accurately detecting and monitoring human movements in real time with high sensitivity and durability.