Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 831-841, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126801

RESUMO

Photocatalytic nitrogen reduction reaction (NRR) is a sustainable process for ammonia synthesis under mild conditions. However, photocatalytic NRR activity and are generally limited by inefficient carrier separation and transfer. Therefore, parallel engineering of bulk phase doping and surface coupling is critical to achieving the goal of efficient NRR. In this study, Cl doped BiOBr nanosheet assemblies (BiOBr/Cl) were constructed in delicately designed deep eutectic solvents (DESs), combined with ionothermal methods at low temperatures and Bi3+ exsolution reduction strategy at high temperatures. The unique liquid state and reducibility of DESs induce the reduction of Bi3+ and the in situ coupling of Bi quantum dots at the surface of BiOBr/Cl nanosheets along with the construction of Bi-BiOBr/Cl nanosheet assemblies. The experimental results show that Cl doping could reduce the exciton dissociation energy and promote its dissociation to free carriers. Bi quantum dots could form tightly coupled Schottky junction with BiOBr/Cl enabling the efficient and unidirectional transmission of photogenerated electrons from BiOBr/Cl to metal Bi. The formed electron deficient region at Schottky interface promotes the adsorption and activation of N2. The hierarchical structure of Bi-BiOBr/Cl nanosheet assembly benefits to providing more N2 adsorption active sites. The DFT calculation shows that the accumulation of high concentration of active hydrogen in Bi-BiOBr/Cl leads to a significant decrease of energy barrier of the first step hydrogenation of N2. Bi-BiOBr/Clis more inclined to adsorb nitrogen for NRR in comparison with H* for hydrogen production. The synergistic effect of Cl doping and Bi coupling result in a high NRR activity of Bi-BiOBr/Cl photocatalyst of 6.67 mmol·g-1·h-1, which was 11.3 times higher than that of initial BiOBr. This study provides a promising strategy for designing highly active NRR photocatalysts with high efficiency carrier dissociation and transport.

2.
J Colloid Interface Sci ; 676: 207-216, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39024821

RESUMO

Developing carbon dioxide (CO2) photocatalysts from transition metal carbides (TMCs) with abundant active sites, modulable electron cloud density, as well as low cost and high stability is of great significance for artificial photosynthesis. Building an efficient electron transfer channel between the photo-excitation site and the reaction-active site to extract and steer photo-induced electron flow is necessary but challenging for the highly selective conversion of CO2. In this study, we achieved an oxygen-bridged Schottky junction between ZnO and Ni3ZnC0.7 (denoted as Znoxide-O-ZnTMC) through a ligand-vacancy strategy of MOF. The ZnO-Ni3ZnC0.7 heterostructure integrates the photo-exciter (ZnO), high-speed electron transport channel (Znoxide-O-ZnTMC), and reaction-active species (Ni3ZnC0.7), where Znoxide-O-ZnTMC facilitates the transfer of excited electrons in ZnO to Ni3ZnC0.7. The Zn atoms in Ni3ZnC0.7 serve as electron-rich active sites, regulating the CO2 adsorption energy, promoting the transformation of *COOH to CO, and inhibiting H2 production. The ZnO-Ni3ZnC0.7 shows a high CO yield of 2674.80 µmol g-1h-1 with a selectivity of 93.40 % and an apparent quantum yield of 18.30 % (λ = 420 nm) with triethanolamine as a sacrificial agent. The CO production rate remains at 96.40 % after 18 h. Notably, ZnO-Ni3ZnC0.7 exhibits a high CO yield of 873.60 µmol g-1h-1 with a selectivity of 90.20 % in seawater.

3.
Chemistry ; : e202400496, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864360

RESUMO

The prodigious employment of fossil fuels to conquer the global energy demand is becoming a dreadful threat to the human society. This predicament is appealing for a potent photocatalyst that can generate alternate energy sources via solar to chemical energy conversion. With this interest, we have fabricated a ternary heterostructure of Ti3C2 nanosheet modified g-C3N4/Bi2O3 (MCNRBO) Z-scheme photocatalyst through self-assembly process. The morphological analysis clearly evidenced the close interfacial interaction between g-C3N4 nanorod, Bi2O3 and Ti3C2 nanosheets. The oxygen vacancy created on Bi2O3 surface, as suggested by XPS and EPR analysis, supported the Z-scheme heterojunction formation between g-C3N4 nanorod and Bi2O3 nanosheets. The collaborative effect of Z-scheme and Schottky junction significantly reduced charge transfer resistance promoting separation efficiency of excitons as indicated from PL and EIS analysis. The potential of MCNRBO towards photocatalytic application was investigated by H2O2 and H2 evolution reaction. A superior photocatalytic H2O2 and H2 production rate for MCNRBO is observed, which are respectively around 5 and 18 folds higher as compared to pristine CNR nanorod. The present work encourages for the development of a noble, eco-benign and immensely efficient dual heterojunction based photocatalyst, which can acts as saviour of human society from energy crisis.

4.
J Phys Condens Matter ; 36(37)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38843804

RESUMO

Super microgenerator (SMG) refers to a generator that can efficiently convert extremely weak external stimuli into electrical energy and has a small size, high power density and long lifespan, offer ground-breaking solutions for powering wearable devices, wireless distributed sensors and implanted medical equipment. However, the friction and wear between the interfaces of ordinary microgenerator results in an extremely low lifespan. Here, we present a prototype of SMGs based on a 2D-2D (graphite-MoS2) Schottky contact in the state of structural superlubricity (no wear and nearly zero friction between two contacted solid surfaces). What is even more interesting is when the graphite flake is slid from the bulk to the edge of MoS2, the output current will enhance from 31 to 56 A m-2. Through the I-V curve measurement, we found that the conductive channel across the junction can be activated and further enhanced at the edge of MoS2compare to bulk, which provide the explanation for the above-mentioned edge enhancement of power generation. Above results provide the design principles of high-performance SMGs based on 2D-2D Schottky junctions.

5.
ACS Appl Mater Interfaces ; 16(25): 32357-32366, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38877995

RESUMO

Metal-semiconductor junctions play an important role in the development of electronic and optoelectronic devices. A Schottky junction photodetector based on two-dimensional (2D) materials is promising for self-powered photodetection with fast response speed and large signal-to-noise ratio. However, it usually suffers from an uncontrolled Schottky barrier due to the Fermi level pinning effect arising from the interface states. In this work, all-2D Schottky junctions with near-ideal Fermi level depinning are realized, attributed to the high-quality interface between 2D semimetals and semiconductors. We further demonstrate asymmetric diodes based on multilayer graphene/MoS2/PtSe2 with a current rectification ratio exceeding 105 and an ideality factor of 1.2. Scanning photocurrent mapping shows that the photocurrent generation mechanism in the heterostructure switches from photovoltaic effect to photogating effect at varying drain biases, indicating both energy conversion and optical sensing are realized in a single device. In the photovoltaic mode, the photodetector is self-powered with a response time smaller than 100 µs under the illumination of a 405 nm laser. In the photogating mode, the photodetector exhibits a high responsivity up to 460 A/W originating from a high photogain. Finally, the photodetector is employed for single-pixel imaging, demonstrating its high-contrast photodetection ability. This work provides insight into the development of high-performance self-powered photodetectors based on 2D Schottky junctions.

6.
Talanta ; 276: 126234, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749161

RESUMO

Glutathione (GSH) is an essential antioxidant in the human body, but its detection is difficult due to the interference of complex components in serum. Herein, hollow double-layer Pt@CeO2 nanospheres were developed as oxidase mimetics, and the light-assisted oxidase mimetics effects were found. The oxidase activity was enhanced significantly by utilizing the synergistic effect of Schottky junction and the localized surface plasmon resonance (LSPR) of Pt under UV light. A novel GSH colorimetric-fluorescent-SERS sensing platform was established, with the sensing performance notably boosted by using the light-assisted oxidase mimetics effects. This platform boasts an exceptionally low detection limit (LOD) of 0.084 µM, while the detection time was shortened from 10 min to just 2 min. The anti-interference detection with high recovery rate (96.84%-107.4 %) in real serum made it be promising for practical application.


Assuntos
Cério , Colorimetria , Glutationa , Nanosferas , Oxirredutases , Platina , Ressonância de Plasmônio de Superfície , Glutationa/sangue , Glutationa/química , Colorimetria/métodos , Platina/química , Humanos , Cério/química , Nanosferas/química , Oxirredutases/química , Ressonância de Plasmônio de Superfície/métodos , Limite de Detecção , Materiais Biomiméticos/química , Espectrometria de Fluorescência/métodos
7.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727374

RESUMO

The photocatalytic nitrogen reduction reaction (NRR) in aqueous solution is a green and sustainable strategy for ammonia production. Nonetheless, the efficiency of the process still has a wide gap compared to that of the Haber-Bosch one due to the difficulty of N2 activation and the quick recombination of photo-generated carriers. Herein, a core-shell Bi@Bi2MoO6 microsphere through constructing Schottky junctions has been explored as a robust photocatalyst toward N2 reduction to NH3. Metal Bi self-reduced onto Bi2MoO6 not only spurs the photo-generated electron and hole separation owing to the Schottky junction at the interface of Bi and Bi2MoO6 but also promotes N2 adsorption and activation at Bi active sites synchronously. As a result, the yield of the photocatalytic N2-to-ammonia conversion reaches up to 173.40 µmol g-1 on core-shell Bi@Bi2MoO6 photocatalysts, as much as two times of that of bare Bi2MoO6. This work provides a new design for the decarbonization of the nitrogen reduction reaction by the utilization of renewable energy sources.

8.
Nano Lett ; 24(11): 3361-3368, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446607

RESUMO

For the first time, a series of MXene (Ti3C2Tx)/Bi2WO6 Schottky junction piezocatalysts were constructed, and the piezocatalytic hydrogen evolution activity was explored. Optimal Ti3C2Tx/Bi2WO6 exhibits the highest piezocatalytic hydrogen evolution rate of 764.4 µmol g-1 h-1, which is nearly 8 times higher than that of pure Ti3C2Tx and twice as high as that of Bi2WO6. This value also surpasses that of most recently reported typical piezocatalysts. Moreover, related experimental results and density functional theory calculations reveal that Ti3C2Tx/Bi2WO6 can provide unique channels for efficient electron transfer, enhance piezoelectric properties, optimize the adsorption Gibbs free energy of water, reduce activation energy for hydrogen atoms, endow robust separation capacity of charge carrier, and restrict the electron-hole recombination rate, thus significantly promoting the efficiency of hydrogen evolution reaction. Ultimately, we have unraveled an innovative piezocatalytic mechanism. This work broadens the scope of MXene materials in a sustainable energy piezocatalysis application.

9.
Nanomaterials (Basel) ; 14(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535654

RESUMO

In pursuit of realizing neuromorphic computing devices, we demonstrated the high-performance synaptic functions on the top-to-bottom Au/ZnVO/Pt two-terminal ferroelectric Schottky junction (FSJ) device architecture. The active layer of ZnVO exhibited the ferroelectric characteristics because of the broken lattice-translational symmetry, arising from the incorporation of smaller V5+ ions into smaller Zn2+ host lattice sites. The fabricated FSJ devices displayed an asymmetric hysteresis behavior attributed to the ferroelectric polarization-dependent Schottky field-emission rate difference in between positive and negative bias voltage regions. Additionally, it was observed that the magnitude of the on-state current could be systematically controlled by changing either the amplitude or the width of the applied voltage pulses. Owing to these voltage pulse-tunable multi-state memory characteristics, the device revealed diverse synaptic functions such as short-term memory, dynamic range-tunable long-term memory, and versatile rules in spike time-dependent synaptic plasticity. For the pattern-recognition simulation, furthermore, more than 95% accuracy was recorded when using the optimized experimental device parameters. These findings suggest the ZnVO-based FSJ device holds significant promise for application in next-generation brain-inspired neuromorphic computing systems.

10.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330150

RESUMO

The practical efficacy of nanomedicines for treating solid tumors is frequently low, predominantly due to the elevated interstitial pressure within such tumors that obstructs the penetration of nanomedicines. This increased interstitial pressure originates from both liquid and solid stresses related to an undeveloped vascular network and excessive fibroblast proliferation. To specifically resolve the penetration issues of nanomedicines for tumor treatment, this study introduces a holistic "dual-faceted" approach. A treatment platform predicated on the WS2/Pt Schottky heterojunction was adopted, and flexocatalysis technology was used to disintegrate tumor interstitial fluids, thus producing oxygen and reactive oxygen species and effectively mitigating the interstitial fluid pressure. The chemotherapeutic agent curcumin was incorporated to further suppress the activity of cancer-associated fibroblasts, minimize collagen deposition in the extracellular matrix, and alleviate solid stress. Nanomedicines achieve homologous targeting by enveloping the tumor cell membrane. It was found that this multidimensional strategy not only alleviated the high-pressure milieu of the tumor interstitium─which enhanced the efficiency of nanomedicine delivery─but also triggered tumor cell apoptosis via the generated reactive oxygen species and modulated the tumor microenvironment. This, in turn, amplified immune responses, substantially optimizing the therapeutic impacts of nanomedicines.

11.
Anal Chim Acta ; 1289: 342210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245201

RESUMO

Alkaline phosphatase (ALP) is a major biomarker for clinical diagnosis, but detection methods of ALP are limited in sensitivity and selectivity. In this paper, a novel method for ALP determination is proposed. A photoelectrochemical (PEC) sensor was prepared by growing UiO-tetratopic tetrakis (4-carbox-yphenyl) porphyrin (TCPP) in situ between layered Ti3C2 through a one-pot hydrothermal method. The obtained Schottky heterojunction photoelectric material Ti3C2@UiO-TCPP not only has a large light absorption range but also greatly improves the efficiency of photogenerated electron hole separation and thereby enhances sensitivity for PEC detection. The phosphate group on the phosphorylated polypeptide was utilized to form a Zr-O-P bond with the zirconium ion on UiO-66, and then photocurrent decreases due to the steric hindrance effect of phosphorylated polypeptides, that is, the hindrance of electron transfer between the photoelectric material and a solution. The specific interaction between ALP and phosphorylated polypeptides shears the bond between phosphate and zirconium ion on UiO-66 in the peptides then weakens the hindrance effect and increases the photocurrent, thus realizing ALP detection. The linear range of ALP is 0.03-10,000 U·L-1, and the detection limit is 0.012 U·L-1. The method is highly sensitive and selective, and has been applied in detection of ALP in serum samples.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Fosfopeptídeos , Ácidos Ftálicos , Fosfatase Alcalina/química , Titânio/química , Zircônio/química , Corantes , Fosfatos , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
12.
J Nanobiotechnology ; 22(1): 31, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229126

RESUMO

BACKGROUND: Most bone defects caused by bone disease or trauma are accompanied by infection, and there is a high risk of infection spread and defect expansion. Traditional clinical treatment plans often fail due to issues like antibiotic resistance and non-union of bones. Therefore, the treatment of infected bone defects requires a strategy that simultaneously achieves high antibacterial efficiency and promotes bone regeneration. RESULTS: In this study, an ultrasound responsive vanadium tetrasulfide-loaded MXene (VSM) Schottky junction is constructed for rapid methicillin-resistant staphylococcus aureus (MRSA) clearance and bone regeneration. Due to the peroxidase (POD)-like activity of VS4 and the abundant Schottky junctions, VSM has high electron-hole separation efficiency and a decreased band gap, exhibiting a strong chemodynamic and sonodynamic antibacterial efficiency of 94.03%. Under the stimulation of medical dose ultrasound, the steady release of vanadium element promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The in vivo application of VSM in infected tibial plateau bone defects of rats also has a great therapeutic effect, eliminating MRSA infection, then inhibiting inflammation and improving bone regeneration. CONCLUSION: The present work successfully develops an ultrasound responsive VS4-based versatile sonosensitizer for robust effective antibacterial and osteogenic therapy of infected bone defects.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteogênese , Humanos , Ratos , Animais , Vanádio/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia
13.
J Colloid Interface Sci ; 660: 617-627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266343

RESUMO

Clean H2 fuel obtained from the photocatalytic water splitting to hydrogen reaction could efficiently alleviate current energy crisis and the concomitant environmental pollution problems. Therefore, it is desirable to search for a highly efficient photocatalytic system to decrease the energy barrier of water splitting reaction. Herein, the 1T/2H mixed phase MoS2 sample with Schottky junction between contact interfaces is developed through molten salt synthesis for photocatalytic hydrogen production under a dye-sensitized system (Eosin Y-TEOA-MoS2) driven by the visible light. In mixed phase MoS2 sample, the photogenerated electrons of 2H-phase MoS2 migrated to the 1T-phase MoS2 are difficult to jump back because of the existence of Schottky barrier, which greatly suppresses the quenching of EY and therefore results in an enhanced hydrogen evolution performance. Therefore, the optimized MoS2 sample (MoS2-350) has an initial hydrogen evolution rate of 213 µmol h-1 and corresponding apparent quantum yield of 36.1 % at 420 nm, far higher than those of pure Eosin Y. It is strongly confirmed by the steady-state/time-resolved photoluminescence (PL) spectra and transient photocurrent response experiments. With the assistance of Density functional theory (DFT) calculation, the function of Schottky junction in photocatalytic hydrogen evolution reaction is well explained. In addition, a new and universal method (SVM curve) of judging oxidation or reduction quenching for photosensitizers is proposed.

14.
Nanomaterials (Basel) ; 14(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276744

RESUMO

Field-effect transistor (FET) biosensors can be used to measure the charge information carried by biomolecules. However, insurmountable hysteresis in the long-term and large-range transfer characteristic curve exists and affects the measurements. Noise signal, caused by the interference coefficient of external factors, may destroy the quantitative analysis of trace targets in complex biological systems. In this report, a "rectified signal" in the output characteristic curve, instead of the "absolute value signal" in the transfer characteristic curve, is obtained and analyzed to solve these problems. The proposed asymmetric Schottky barrier-generated MoS2/WTe2 FET biosensor achieved a 105 rectified signal, sufficient reliability and stability (maintained for 60 days), ultra-sensitive detection (10 aM) of the Down syndrome-related DYRK1A gene, and excellent specificity in base recognition. This biosensor with a response range of 10 aM-100 pM has significant application potential in the screening and rapid diagnosis of Down syndrome.

15.
Adv Mater ; 36(19): e2312102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38289723

RESUMO

The atherosclerotic vulnerable plaque is characterized by the foamy macrophage burden, involving impaired cholesterol efflux and deficient efferocytosis. Correspondingly, piezocatalytic therapy is an emerging solution for eliminating the foamy macrophage burden with satisfactory spatiotemporal controllability and deep penetration depth. Herein, a biomimetic Trojan horse (Au-ZnO@MM) is engineered by coating the macrophage membrane (MM) onto the surface of a rod-like Au-ZnO Schottky Junction to effectively relieve the atherosclerotic progression. These Trojan horses with the coating of MM are actively transported into subsistent foamy macrophages and generate abundant reactive oxygen species (ROS) via ultrasound-activated piezocatalysis. ROS-initiated autophagy and mitochondrial dysfunction induce substantial cell apoptosis, alleviating the burden of subsistent foamy macrophages. The resulting apoptotic fragments further significantly facilitate cholesterol excretion and trigger efferocytosis of intraplaque fresh macrophages. Ultimately, the biomimetic Au-ZnO@MM piezocatalyst not only inhibits the foaming capacity of macrophages, but also improves the function of removing cell debris, which can stabilize atherosclerotic vulnerable plaque. Meanwhile, the plasmon resonance effect of integrated gold nanoparticles enables favorable photoacoustic molecular imaging for real-time image-guided atherosclerotic therapy. This proposed biomimetic Trojan horse strategy provides the paradigm of employing ultrasound-activated piezocatalytic methodology for enhanced atherosclerotic theranostics.


Assuntos
Aterosclerose , Materiais Biomiméticos , Ouro , Espécies Reativas de Oxigênio , Óxido de Zinco , Animais , Aterosclerose/terapia , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Ouro/química , Materiais Biomiméticos/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/química , Células RAW 264.7 , Macrófagos/metabolismo , Humanos , Nanopartículas Metálicas/química , Catálise , Biomimética/métodos , Apoptose/efeitos dos fármacos , Placa Aterosclerótica/patologia
16.
Adv Mater ; 36(5): e2309376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914405

RESUMO

Covalent triazine frameworks (CTFs) are emerging as a promising molecular platform for photocatalysis. Nevertheless, the construction of highly effective charge transfer pathways in CTFs for oriented delivery of photoexcited electrons to enhance photocatalytic performance remains highly challenging. Herein, a molecular engineering strategy is presented to achieve highly efficient charge separation and transport in both the lateral and vertical directions for solar-to-formate conversion. Specifically, a large π-delocalized and π-stacked Schottky junction (Ru-Th-CTF/RGO) that synergistically knits a rebuilt extended π-delocalized network of the D-A1 -A2 system (multiple donor or acceptor units, Ru-Th-CTF) with reduced graphene oxide (RGO) is developed. It is verified that the single-site Ru units in Ru-Th-CTF/RGO act as effective secondary electron acceptors in the lateral direction for multistage charge separation/transport. Simultaneously, the π-stacked and covalently bonded graphene is regarded as a hole extraction layer, accelerating the separation/transport of the photogenerated charges in the vertical direction over the Ru-Th-CTF/RGO Schottky junction with full use of photogenerated electrons for the reduction reaction. Thus, the obtained photocatalyst has an excellent CO2 -to-formate conversion rate (≈11050 µmol g-1 h-1 ) and selectivity (≈99%), producing a state-of-the-art catalyst for the heterogeneous conversion of CO2 to formate without an extra photosensitizer.

17.
Adv Mater ; 36(6): e2309371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769436

RESUMO

Polarimetric photodetector can acquire higher resolution and more surface information of imaging targets in complex environments due to the identification of light polarization. To date, the existing technologies yet sustain the poor polarization sensitivity (<10), far from market application requirement. Here, the photovoltaic detectors with polarization- and gate-tunable optoelectronic reverse phenomenon are developed based on semimetal 1T'-MoTe2 and ambipolar WSe2 . The device exhibits gate-tunable reverse in rectifying and photovoltaic characters due to the directional inversion of energy band, yielding a wide range of current rectification ratio from 10-2 to 103 and a clear object imaging with 100 × 100 pixels. Acting as a polarimetric photodetector, the polarization ratio (PR) value can reach a steady state value of ≈30, which is compelling among the state-of-the-art 2D-based polarized detectors. The sign reversal of polarization-sensitive photocurrent by varying the light polarization angles is also observed, that can enable the PR value with a potential to cover possible numbers (1→+∞/-∞→-1). This work develops a photovoltaic detector with polarization- and gate-tunable optoelectronic reverse phenomenon, making a significant progress in polarimetric imaging and multifunction integration applications.

18.
J Colloid Interface Sci ; 657: 133-141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38035416

RESUMO

As one of the most promising photocatalysts for H2 evolution, graphitic carbon nitride (CN) has many appealing attributes. However, the activity of pristine CN remains unsatisfactory due to severe charge carrier recombination and lack of active sites. In this study, we report a two-step approach for the synthesis of CN nanotubes (TCN) loaded with NiS nanoparticles. The resulting composite photocatalysts gave a H2 evolution rate of 752.9 µmol g-1 h-1, which is 42.3 times higher compared to the pristine CN photocatalyst. Experimental and simulation results showed that the Schottky junction which was formed between TCN and NiS was key to achieving high activity. This is because the formation of Schottky junction prevented the backflow of electrons from NiS to TCN, which improved charge separation efficiency. More importantly, it also led to the accumulation of electrons on NiS, which significantly weakened the SH bond, such that the intermediate hydrogen species desorbed more easily from NiS surface to promote H2 evolution activity.

19.
Small ; 20(16): e2308408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032173

RESUMO

The weak electronic interaction at metal-photocatalyst heterointerfaces often compromises solar-to-fuel performance. Here, a trifunctional Schottky junction, involving chemically stabilized ultrafine platinum nanoparticles (Pt NPs, ≈3 nm in diameter) on graphitic carbon nitride nanosheets (CNs) is proposed. The Pt-CN electronic interaction induces a 1.5% lattice compressive strain in Pt NPs and maintains their ultrafine size, effectively preventing their aggregation during photocatalytic reactions. Density functional theory calculations further demonstrate a significant reduction in the Schottky barrier at the chemically bonded CN-Pt heterointerface, facilitating efficient interfacial electron transfer, as supported by femtosecond transient absorption spectra (fs-TAS) measurements. The combined effects of lattice strain, stabilized Pt NPs, and efficient interfacial charge transport collaboratively enhance the photocatalytic performance, leading to over an 11-fold enhancement in visible light H2 production (8.52 mmol g-1 h-1) compared to the CN nanosheets with the in situ photo-deposited Pt NPs (0.76 mmol g-1 h-1). This study highlights the effectiveness of strong metal-semiconductor electronic interactions and underscores the potential for developing high-efficiency photocatalysts.

20.
Adv Sci (Weinh) ; 11(7): e2305829, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039442

RESUMO

This work introduces a novel method to construct Schottky junctions to boost the output performance of triboelectric nanogenerators (TENGs). Perovskite barium zirconium titanate (BZT) core/metal silver shell nanoparticles are synthesized to be embedded into electrospun polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers before they are used as tribo-negative layers. The output power of TENGs with composite fiber mat exhibited >600% increase compared to that with neat polymer fiber mat. The best TENG achieved 1339 V in open-circuit voltage, 40 µA in short-circuit current and 47.9 W m-2 in power density. The Schottky junctions increased charge carrier density in tribo-layers, ensuring a high charge transfer rate while keeping the content of conductive fillers low, thus avoiding charge loss and improving performance. These TENGs are utilized to power radio frequency identification (RFID) tags for backscatter communication (BackCom) systems, enabling ultra-massive connectivity in the 6G wireless networks and reducing information communications technology systems' carbon footprint. Specifically, TENGs are used to provide an additional energy source to the passive tags. Results show that TENGs can boost power for BackCom and increase the communication range by 386%. This timely contribution offers a novel route for sustainable 6G applications by exploiting the expanded communication range of BackCom tags.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA