Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.027
Filtrar
1.
Animals (Basel) ; 14(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38997954

RESUMO

Corneal ulcers are a common and potentially vision-threatening condition in horses that can be challenging to treat with conventional therapies alone. This case report describes the successful treatment of a non-healing corneal ulcer in a 28-year-old Hispano-Bretón mare using the secretome derived from adipose tissue-derived mesenchymal stem cells (ASCs). Despite initial treatment with antibiotics, anti-inflammatory drugs, and surgical debridement, the corneal ulcer failed to heal properly, exhibiting persistent epithelial defects and stromal complications. As an alternative regenerative approach, the ASC secretome, a rich source of trophic factors, cytokines, and extracellular vesicles, was topically administered to the affected eye. Remarkably, within one week of secretome treatment, the clinical signs of blepharospasm and epiphora resolved, and the corneal ulcer exhibited complete re-epithelialization, regained transparency, and reduced neovascularization. No recurrence was observed during the 1.5-year follow-up period. This case highlights the potential therapeutic benefits of the ASC secretome in promoting corneal wound healing and suggests its promise as a novel cell-free therapy for treating refractory corneal ulcers in horses.

2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000239

RESUMO

Breast cancer is most common in women, and in most cases there is no evidence of spread and the primary tumor is removed, resulting in a 'cure'. However, in 10% to 30% of these women, distant metastases recur after years to decades. This is due to breast cancer cells disseminating to distant organs and lying quiescent. This is called metastatic dormancy. Dormant cells are generally resistant to chemotherapy, hormone therapy and immunotherapy as they are non-cycling and receive survival signals from their microenvironment. In this state, they are clinically irrelevant. However, risk factors, including aging and inflammation can awaken dormant cells and cause breast cancer recurrences, which may happen even more than ten years after the primary tumor removal. How these breast cancer cells remain in dormancy is being unraveled. A key element appears to be the mesenchymal stem cells in the bone marrow that have been shown to promote breast cancer metastatic dormancy in recent studies. Indirect co-culture, direct co-culture and exosome extraction were conducted to investigate the modes of signal operation. Multiple signaling molecules act in this process including both protein factors and microRNAs. We integrate these studies to summarize current findings and gaps in the field and suggest future research directions for this field.


Assuntos
Neoplasias da Mama , Exossomos , Células-Tronco Mesenquimais , Metástase Neoplásica , Transdução de Sinais , Humanos , Exossomos/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Animais
3.
Cell Rep ; 43(7): 114481, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003734

RESUMO

Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well established. Here, we tested the hypothesis that inguinal white adipose tissue (iWAT) adaptations are critical for these beneficial effects and determined the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improves glucose tolerance, while cold-exposed iWAT transplantation shows no such benefit. Compared to training, cold leads to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting the thermogenic capacity of iWAT. In contrast, only training increases extracellular space and vesicle transport proteins, and only training upregulates proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.

4.
J Biol Chem ; : 107521, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950861

RESUMO

Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 single nucleotide polymorphisms are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 knockout mice revealed a critical, non-redundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.

5.
Front Immunol ; 15: 1367432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994364

RESUMO

Background: Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells. Methods: The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions. Results: Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions. Conclusion: The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.


Assuntos
Células Epiteliais , Neutrófilos , Secretoma , Animais , Bovinos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Secretoma/metabolismo , Feminino , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Fagocitose , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994760

RESUMO

The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long­standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor­targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence­associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment­induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.


Assuntos
Senescência Celular , Metástase Neoplásica , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Animais , Proliferação de Células
7.
Plants (Basel) ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999714

RESUMO

Plants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response. This study examined changes in the soluble extracellular sub-proteome of sorghum cell cultures exposed to a combination of sorbitol-induced osmotic stress and heat at 40 °C. The combined stress significantly reduced metabolic activity and altered protein secretion. While cells treated with osmotic stress alone had elevated proline content, the osmoprotectant in the combined treatment remained unchanged, confirming that sorghum cells exposed to combined stress utilise adaptive processes distinct from those invoked by the single stresses applied separately. Reactive oxygen species (ROS)-metabolising proteins and proteases dominated differentially expressed proteins identified in cells subjected to combined stress. ROS-generating peroxidases were suppressed, while ROS-degrading proteins were upregulated for protection from oxidative damage. Overall, our study provides protein candidates that could be used to develop crops better suited for an increasingly hot and dry climate.

8.
Protein J ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009910

RESUMO

Plasmodium falciparum (P. falciparum), which causes the most severe form of malaria, if left untreated, has 24 h window in which it can cause severe illness and even death. The aim of this study was to create the most comprehensive and informative secretory-proteome possible by combining high-accuracy and high-sensitivity protein identification technology. In this study, we used Plasmodium falciparum 3D7 (Pf3D7) as the model parasite to develop a label-free quantification proteomic strategy with the main goal of identifying Pf3D7 proteins that are supposed to be secreted outside the infected erythrocytes in the spent media culture during the in-vitro study. The spent culture media supernatant was subjected to differential and ultra-centrifugation steps followed by total protein extraction, estimation, and in-solution digestion using trypsin, digested peptides were analyzed using Nano-LC coupled with ESI for MS/MS. MS/MS spectra were processed using Maxquant software (v2.1.4.0.). Non-infected erythrocytes incubated spent cultured media supernatant were considered as control. Out of discovered 38 proteins, proteins belonging to P. falciparum spp. were EGF-like protein (C0H544), Endoplasmic reticulum chaperone GRP170 (C0H5H0), Small GTP-binding protein sar1 (Q8I1S0), Erythrocyte membrane protein 1, PfEMP1 (Q8I639), aldehyde reductase (Q8ID61), Conserved Plasmodium proteins (Q8IEH3, Q8ILD1), Antigen 332, DBL-like protein (Q8IHN4), Fe-S cluster assembly protein (Q8II78), identified and chosen for further in-depth investigation. This study highlights the value of secretory Plasmodium proteins play crucial roles in various aspects of the disease progression and host-pathogen interactions which can serve as diagnostic markers for malaria infection.

9.
Biochem Biophys Res Commun ; 727: 150313, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38954981

RESUMO

Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.

10.
Int J Biol Macromol ; : 133793, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992542

RESUMO

Mesenchymal stem cells (MCSs) secretome provide MSC-like therapeutic effects in preclinical models of lung injury, circumventing safety concerns with the use of live cells. Secretome consists of Extracellular Vesicles (EVs), including populations of nano- to micro-sized particles (exosomes and microvesicles) delimited by a phospholipidic bilayer. However, its poor stability and bioavailability severely limit its application. The role of Hyaluronic acid (HA) as potential carrier in biomedical applications has been widely demonstrated. Here, we investigated the interplay between HA and MSCs- secretome blends and their ability to exert a bioactive effect on pulmonary differentiation in a 3D microenvironment mimicking lung niche. To this aim, the physical-chemical properties of HA/Secre blends have been characterized at low, medium and high HA Molecular Weights (MWs), by means of SEM/TEM, DLS, confocal microscopy and FTIR. Collectively physical-chemical properties highlight the interplay between the HA and the EVs. In 3D matrices, HA/Secre blends showed to promote differentiation in pulmonary lineage, improved as the MW of the HA in the blends decreased. Finally, HA/Secre blends' ability to cross an artificial mucus has been demonstrated. Overall, this work provides new insights for the development of future devices for the therapy of respiratory diseases that are still unmet.

11.
Mater Today Bio ; 27: 101128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38988819

RESUMO

The recent and exciting success of anti-inflammatory therapies for ischemic heart disease (e.g. atherosclerosis) is hindered by the lack of site-specific and targeted therapeutic deposition. Microbubble-mediated focused ultrasound, which uses circulating, lipid-encapsulated intravascular microbubbles to locally enhance endothelial permeability, offers an exciting approach. Atherosclerotic plaques preferentially develop in regions with disturbed blood flow, and microbubble-endothelial cell membrane interactions under such flow conditions are not well understood. Here, using an acoustically-coupled microscopy system, endothelial cells were sonicated (1 MHz, 20 cycle bursts, 1 ms PRI, 4 s duration, 300 kPa peak-negative pressure) under perfusion with Definity™ bubbles to examine microbubble-mediated endothelial permeabilization under a range of physiological conditions. Endothelial preconditioning under prolonged shear influenced physiology and the secretome, inducing increased expression of pro-angiogenesis analytes, decreasing levels of pro-inflammatory ones, and increasing the susceptibility of ultrasound therapy. Ultrasound treatment efficiency was positively correlated with concentrations of pro-angiogenic cytokines (e.g. VEGF-A, EGF, FGF-2), and negatively correlated with pro-inflammatory chemokines (e.g. MCP-1, GCP-2, SDF-1). Furthermore, ultrasound therapy under non-reversing pulsatile flow (∼4-8 dyne/cm2, 0.5-1 Hz) increased permeabilization up to 2.4-fold compared to shear-matched laminar flow, yet treatment under reversing oscillatory flow resulted in more heterogeneous modulation. This study provides insight into the role of vascular physiology, including endothelial biology, into the design of a localized ultrasound drug delivery system for ischemic heart disease.

12.
Cells ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891122

RESUMO

Temporomandibular disorders (TMDs) are a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and associated structures. Mesenchymal stromal/stem cells (MSCs) have emerged as a promising therapy for TMJ repair. This systematic review aims to consolidate findings from the preclinical animal studies evaluating MSC-based therapies, including MSCs, their secretome, and extracellular vesicles (EVs), for the treatment of TMJ cartilage/osteochondral defects and osteoarthritis (OA). Following the PRISMA guidelines, PubMed, Embase, Scopus, and Cochrane Library databases were searched for relevant studies. A total of 23 studies involving 125 mice, 149 rats, 470 rabbits, and 74 goats were identified. Compliance with the ARRIVE guidelines was evaluated for quality assessment, while the SYRCLE risk of bias tool was used to assess the risk of bias for the studies. Generally, MSC-based therapies demonstrated efficacy in TMJ repair across animal models of TMJ defects and OA. In most studies, animals treated with MSCs, their derived secretome, or EVs displayed improved morphological, histological, molecular, and behavioral pain outcomes, coupled with positive effects on cellular proliferation, migration, and matrix synthesis, as well as immunomodulation. However, unclear risk in bias and incomplete reporting highlight the need for standardized outcome measurements and reporting in future investigations.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transtornos da Articulação Temporomandibular , Articulação Temporomandibular , Animais , Articulação Temporomandibular/patologia , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Transtornos da Articulação Temporomandibular/terapia , Humanos , Osteoartrite/terapia , Osteoartrite/patologia , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927998

RESUMO

Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.


Assuntos
Quimiocina CXCL12 , Interleucina-6 , Interleucina-8 , Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Meios de Cultivo Condicionados , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Células Cultivadas , Pele/metabolismo , Pele/citologia , Proliferação de Células , Quimiocina CCL2/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo
14.
Theriogenology ; 226: 202-212, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38909435

RESUMO

Equine endometritis is one of the main causes of subfertility in the mare. Unraveling the molecular mechanisms involved in this condition and pinpointing proteins with biomarker potential could be crucial in both diagnosing and treating this condition. This study aimed to identify the endometritis-induced changes in the endometrial proteome in mares and to elucidate potential biological processes in which these proteins may be involved. Secondly, biomarkers related to bacterial endometritis (BE) in mares were identified. Uterine lavage fluid samples were collected from 28 mares (14 healthy: negative cytology and culture, and no clinical signs and 14 mares with endometritis: positive cytology and culture, in addition to clinical signs). Proteomic analysis was performed with a UHPLC-MS/MS system and bioinformatic analysis was carried out using Qlucore Omics Explorer. Gene Ontology enrichment and pathway analysis (PANTHER and KEGG) of the uterine proteome were performed to identify active biological pathways in enriched proteins from each group. Quantitative analysis revealed 38 proteins differentially abundant in endometritis mares when compared to healthy mares (fold changes >4.25, and q-value = 0.002). The proteins upregulated in the secretome of mares with BE were involved in biological processes related to the generation of energy and REDOX regulation and to the defense response to bacterium. A total of 24 biomarkers for BE were identified using the biomarker workbench algorithm. Some of the proteins identified were related to the innate immune system such as isoforms of histones H2A and H2B involvement in neutrophil extracellular trap (NET) formation, complement C3a, or gelsolin and profilin, two actin-binding proteins which are essential for dynamic remodeling of the actin cytoskeleton during cell migration. The other group of biomarkers were three known antimicrobial peptides (lysosome, equine cathelicidin 2 and myeloperoxidase (MPO)) and two uncharacterized proteins with a high homology with cathelicidin families. Findings in this study provide the first evidence that innate immune cells in the equine endometrium undergo reprogramming of metabolic pathways similar to the Warburg effect during activation. In addition, biomarkers of BE in uterine fluid of mares including the new proteins identified, as well as other antimicrobial peptides already known, offer future lines of research for alternative treatments to antibiotics.

15.
Matrix Biol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851302

RESUMO

Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM). Earlier studies showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulated that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence for shaping the extracellular matrix as well as for recruitment of immune cells to the tumor microenvironment. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.

16.
Stem Cells ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38826008

RESUMO

Mesenchymal Stromal Cells (MSCs) are investigated as cellular therapeutics for Inflammatory Bowel Diseases and associated Perianal Fistula, although consistent efficacy remains a concern. Determining host factors that modulate MSCs' potency including their secretion of angiogenic & wound healing factors, immunosuppression and anti-inflammatory properties are important determinants of their functionality. We investigated the mechanisms that regulate the secretion of angiogenic & wound healing factors and immune suppression of human bone marrow MSCs. Secretory analysis of MSCs focusing on eighteen angiogenic & wound healing secretory molecules identified the most abundancy of Vascular Endothelial Growth Factor-A(VEGF-A). MSC viability and secretion of other angiogenic factors are not dependent on VEGF-A secretion which exclude the autocrine role of VEGF-A on MSC's fitness. However, combination of inflammatory cytokines IFNγand TNFαreduces MSC's VEGF-A secretion. To identify the effect of intestinal microvasculature on MSCs' potency, coculture analysis was performed between Human Large Intestine Microvascular Endothelial Cells(HLMVECs) and human bone marrow derived MSCs. HLMVECs do not attenuate MSCs' viability despite blocking their VEGF-A secretion. In addition, HLMVECs neither attenuate MSC's IFNγmediated upregulation of immunosuppressive enzyme Indoleamine 2,3-dioxygenase(IDO) nor abrogate suppression of T cell proliferation despite the attenuation of VEGF-A secretion. We found that HLMVECs express copious amounts of endothelial nitric oxide synthase (eNOS) and mechanistic analysis showed that pharmacological blocking reverses HLMVEC mediated attenuation of MSC's VEGF-A secretion. Together these results suggest that secretion of VEGF-A and immunosuppression are separable functions of MSCs which are regulated by distinct mechanisms in the host.

17.
Front Biosci (Landmark Ed) ; 29(6): 228, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940050

RESUMO

Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach for a variety of diseases due to their immunomodulatory and tissue regeneration capabilities. Despite their potential, the clinical application of MSC therapies is hindered by limited cell retention and engraftment at the target sites. Electrospun scaffolds, with their high surface area-to-volume ratio and tunable physicochemical properties, can be used as platforms for MSC delivery. However, synthetic polymers often lack the bioactive cues necessary for optimal cell-scaffold interactions. Integrating electrospun scaffolds and biological polymers, such as polysaccharides, proteins, and composites, combines the mechanical integrity of synthetic materials with the bioactivity of natural polymers and represents a strategic approach to enhance cell-scaffold interactions. The molecular interactions between MSCs and blended or functionalized scaffolds have been examined in recent studies, and it has been shown that integration can enhance MSC adhesion, proliferation, and paracrine secretion through the activation of multiple signaling pathways, such as FAK/Src, MAPK, PI3K/Akt, Wnt/ß-catenin, and YAP/TAZ. Preclinical studies on small animals also reveal that the integration of electrospun scaffolds and natural polymers represents a promising approach to enhancing the delivery and efficacy of MSCs in the context of regenerating bone, cartilage, muscle, cardiac, vascular, and nervous tissues. Future research should concentrate on identifying the distinct characteristics of the MSC niche, investigating the processes involved in MSC-scaffold interactions, and applying new technologies in stem cell treatment and biofabrication to enhance scaffold design. Research on large animal models and collaboration among materials scientists, engineers, and physicians are crucial to translating these advancements into clinical use.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Polímeros , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Polímeros/química , Engenharia Tecidual/métodos
18.
Biomolecules ; 14(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927053

RESUMO

The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.


Assuntos
Neoplasias , Proteólise , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Autofagia/genética , Animais , Mutação , Lisossomos/metabolismo , Lisossomos/genética , Carcinogênese/genética , Carcinogênese/metabolismo
19.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928194

RESUMO

Gap injuries to the peripheral nervous system result in pain and loss of function, without any particularly effective therapeutic options. Within this context, mesenchymal stem cell (MSC)-derived exosomes have emerged as a potential therapeutic option. Thus, the focus of this study was to review currently available data on MSC-derived exosome-mounted scaffolds in peripheral nerve regeneration in order to identify the most promising scaffolds and exosome sources currently in the field of peripheral nerve regeneration. We conducted a systematic review following PRISMA 2020 guidelines. Exosome origins varied (adipose-derived MSCs, bone marrow MSCs, gingival MSC, induced pluripotent stem cells and a purified exosome product) similarly to the materials (Matrigel, alginate and silicone, acellular nerve graft [ANG], chitosan, chitin, hydrogel and fibrin glue). The compound muscle action potential (CMAP), sciatic functional index (SFI), gastrocnemius wet weight and histological analyses were used as main outcome measures. Overall, exosome-mounted scaffolds showed better regeneration than scaffolds alone. Functionally, both exosome-enriched chitin and ANG showed a significant improvement over time in the sciatica functional index, CMAP and wet weight. The best histological outcomes were found in the exosome-enriched ANG scaffold with a high increase in the axonal diameter and muscle cross-section area. Further studies are needed to confirm the efficacy of exosome-mounted scaffolds in peripheral nerve regeneration.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Regeneração Nervosa , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Animais , Alicerces Teciduais/química , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
20.
Stem Cell Rev Rep ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922529

RESUMO

Understanding the impact of various culturing strategies on the secretome composition of adipose-derived stromal cells (ASC) enhances their therapeutic potential. This study investigated changes in the secretome of perirenal ASC (prASC) under different conditions: normoxia, cytokine exposure, high glucose, hypoxia, and hypoxia with high glucose. Using mass spectrometry and enrichment clustering analysis, we found that normoxia enriched pathways related to extracellular matrix (ECM) organization, platelet degranulation, and insulin-like growth factor (IGF) transport and uptake. Cytokine exposure influenced metabolism, vascular development, and protein processing pathways. High glucose affected the immune system, metabolic processes, and IGF transport and uptake. Hypoxia impacted immune and metabolic processes and protein processing. Combined hypoxia and high glucose influenced the immune system, IGF transport and uptake, and ECM organization. Our findings highlight the potential of manipulating culturing conditions to produce secretomes with distinct protein and functional profiles, tailoring therapeutic strategies accordingly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA