RESUMO
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed.
RESUMO
Quantification in the driving patterns of activity descriptors on structure-activity relationships and reaction mechanisms over heterogeneous catalysts is still a great challenge and needs to be addressed urgently. Herein, with the example of typical Mn-based catalysts, based on the activity regularity and many characterizations, the chemisorbed oxygen density (ρOß) and particle size (dTEM) have been proposed as the two-dimensional descriptors for selective catalytic reduction of NO, whose role is in quantifying the contents of vacancy defects and the amounts of active sites located on terraces or interfaces, respectively. They can be utilized to construct and quantify the driving patterns for the structure-activity relationships and reaction mechanisms of NO reduction. As a consequence, a complementary modulation for Ea by ρOß and dTEM is described quantitatively in terms of the fitted functions. Moreover, based on the structure-activity relationships and the quantification laws of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), the reaction efficiency (RE) of the specific combined NOx-intermediate is identified as the trigger to drive the Langmuir-Hinshelwood mechanism and modulated by the descriptors complementally and collaboratively following the fitted quantification functions. Either of the two descriptors at its lower values plays a dominant role in regulating Ea and RE, and the dominant factor evolves progressively: dTEM â coupling dTEM with ρOß â ρOß, when the dependency of Ea and RE on the descriptors is adopted to identify the dominant factor and domains. Therefore, this work has quantitatively accounted for the essence of activity modulation and may provide insight into the quantitative driving patterns for reaction activity and mechanism.
RESUMO
Volatile organic compounds (VOCs) emitted from coal-fired flue gas of thermal power plants have reached unprecedented levels due to lack of understanding of reaction mechanisms under industrial settings. Herein, inhibition mechanisms for catalytic oxidation of o-xylene in simulated coal-fired flue gas are elucidated with in-situ and ex-situ spectroscopic techniques considering the presence of impurity components (NO, NH3, SO2, H2O). MnCe oxide catalysts prepared at Mn: Ce mass ratios of 6:4 are demonstrated to promote 87% o-xylene oxidation at 250 °C under gas hourly space velocities of 60,000 h-1. Reaction intermediates on the catalyst surface are revealed to be o-benzoquinones, benzoates, and formate and they were stably formed under O2/N2 atmospheres. When either NO or NH3 was introduced into the simulated flue gas, the formed species shifted toward formate in minutes, which indicated that changes in catalyst surface chemistry are directly related to impurity components. Presence of NH3 in the simulated flue gas inhibited o-xylene oxidation by reducing Mn and lowering Brønsted acidity of the catalyst. Impurity components associated with pollutant removal processes (Hg0 oxidation and selective catalytic reduction of NO) lowered o-xylene removal efficiency. Presence of o-xylene in the flue gas had little effect on the efficiency of pollutant removal processes. Layered catalytic beds located downstream from Hg0/NO pollutant removal processes are proposed to lower VOC emissions from coal-fired flue gases of thermal power plants in industrial settings.
RESUMO
Small pore zeolites with chabazite structure have been commercialized for selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonium (NH3) from diesel exhaust. However, conventional zeolite synthesis processes detrimental effects on the environment due to the consumption of large amount of water, organic templates. Thus, this study proposed a green synthesis process with addition of minimal amount of water, structure directing agent and shortened steps to prepare nano-sized SSZ-13 (0.12 µm) using trans-crystallization strategy and exhibited enhanced performance for NOx removal after copper ion-exchange. The operation temperature window (NOx conversion >90 %) as well as the SO2 and H2O resistance over the green-route prepared nano-sized SSZ-13 (178-480 °C) outperformed the conventional SSZ-13 (29.8 µm, 211-438 °C) mainly due to the much shorter diffusion path. This clearly implied that the mass transportation was key for NH3-SCR of NOx on such small pore zeolite catalysts, which was further confirmed via an in-depth mass transportation calculation process. These results demonstrate that the Cu-nano-sized SSZ-13 prepared by the environmental benign route has great potential to act as a new generation of deNOx catalyst for diesel exhaust and provided a guideline for researchers to develop new methods to synthesize nano-catalysts for air pollution control.