Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol NMR ; 76(1-2): 29-37, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35320434

RESUMO

Sulfur-containing sites in proteins are of great importance for both protein structure and function, including enzymatic catalysis, signaling pathways, and recognition of ligands and protein partners. Selenium-77 is an NMR active spin-1/2 nucleus that shares many physiochemical properties with sulfur and can be readily introduced into proteins at sulfur sites without significant perturbations to the protein structure. The sulfur-containing amino acid methionine is commonly found at protein-protein or protein-ligand binding sites. Its selenium-containing counterpart, selenomethionine, has a broad chemical shift dispersion useful for NMR-based studies of complex systems. Methods such as (1H)-77Se-13C double cross polarization or {77Se}-13C REDOR could be valuable to map the local environment around selenium sites in proteins but have not been demonstrated to date. In this work, we explore these dipolar transfer mechanisms for structural characterization of the GB1 V39SeM variant of the model protein GB1 and demonstrate that 77Se-13C based correlations can be used to map the local environment around selenium sites in proteins. We have found that the general detection limit is ~ 5 Å, but longer range distances up to ~ 7 Å can be observed as well. This study establishes a framework for the future characterization of selenium sites at protein-protein or protein-ligand binding interfaces.


Assuntos
Selênio , Ligantes , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Selênio/química , Selênio/metabolismo , Selenometionina/metabolismo , Enxofre/química
2.
Magn Reson Chem ; 60(1): 148-156, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273131

RESUMO

The 77 Se NMR spectra of selenate were studied under various circumstances, such as concentration, pH, temperature, ionic strength, and D2 O:H2 O ratio, in order to examine its potential as a water-soluble internal chemical shift standard. The performance of selenate as a chemical shift reference and that of other attempted ones from the literature (dimethyl selenide, tetramethylsilane/TMS, and 3-(trimethylsilyl)propane-1-sulfonate/DSS) was also explored. The uncertainty in the resulting chemical shift relative to the effective spectral width is comparable to that of DSS. Compared to the currently prevalent water-soluble external chemical shift reference, selenic acid solution, the properties of internal selenate are much more favorable in terms of ease of use. We have also demonstrated that selenate can be used in reducing media, which is inevitable for the analysis of selenol compounds. Thus, it can be stated that sodium selenate is a robust internal chemical shift reference in aqueous media for 77 Se NMR measurements; the chemical shift of this reference in a solution containing 5 V/V% D2 O at 25°C and 0.15 mol·dm-3 ionic strength is 1048.65 ppm relative to 60 V/V% dimethyl selenide in CDCl3 and 1046.40 ppm relative to the 1 H signal of 0.03 V/V% TMS in CDCl3 . In summary, a water-soluble, selenium-containing internal chemical shift reference compound was introduced for 77 Se NMR measurements for the first time in the literature, and with the aforementioned results all previous 77 Se measurements can be converted to a unified scale defined by the International Union of Pure and Applied Chemistry.

3.
Int J Parasitol Drugs Drug Resist ; 7(3): 303-313, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28826037

RESUMO

With the aim to develop compounds able to target multiple metabolic pathways and, thus, to lower the chances of drug resistance, we investigated the anti-trypanosomal activity and selectivity of a series of symmetric diglycosyl diselenides and disulfides. Of 18 compounds tested the fully acetylated forms of di-ß-D-glucopyranosyl and di-ß-D-galactopyranosyl diselenides (13 and 15, respectively) displayed strong growth inhibition against the bloodstream stage of African trypanosomes (EC50 0.54 µM for 13 and 1.49 µM for 15) although with rather low selectivity (SI < 10 assayed with murine macrophages). Nonacetylated versions of the same sugar diselenides proved to be, however, much less efficient or completely inactive to suppress trypanosome growth. Significantly, the galactosyl (15), and to a minor extent the glucosyl (13), derivative inhibited glucose catabolism but not its uptake. Both compounds induced redox unbalance in the pathogen. In vitro NMR analysis indicated that diglycosyl diselenides react with glutathione, under physiological conditions, via formation of selenenylsulfide bonds. Our results suggest that non-specific cellular targets as well as actors of the glucose and the redox metabolism of the parasite may be affected. These molecules are therefore promising leads for the development of novel multitarget antitrypanosomal agents.


Assuntos
Antiprotozoários/farmacologia , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Animais , Glicosilação , Homeostase/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Selênio/química , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA