RESUMO
Greenbeards are selfish genetic elements that make their bearers behave either altruistically towards individuals bearing similar greenbeard copies or harmfully towards individuals bearing different copies. They were first proposed by W. D. Hamilton over 50 yr ago, to illustrate that kin selection may operate at the level of single genes. Examples of greenbeards have now been reported in a wide range of taxa, but they remain undocumented in plants. In this paper, we discuss the theoretical likelihood of greenbeard existence in plants. We then question why the greenbeard concept has never been applied to plants and speculate on how hypothetical greenbeards could affect plant-plant interactions. Finally, we point to different research directions to improve our knowledge of greenbeards in plants.
RESUMO
Meiotic drivers are selfish elements that bias their own transmission into more than half of the viable progeny produced by a driver+/driver- heterozygote. Meiotic drivers are thought to exist for relatively short evolutionary timespans because a driver gene or gene family is often found in a single species or in a group of very closely related species. Additionally, drivers are generally considered doomed to extinction when they spread to fixation or when suppressors arise. In this study, we examine the evolutionary history of the wtf meiotic drivers first discovered in the fission yeast Schizosaccharomyces pombe. We identify homologous genes in three other fission yeast species, S. octosporus, S. osmophilus, and S. cryophilus, which are estimated to have diverged over 100 million years ago from the S. pombe lineage. Synteny evidence supports that wtf genes were present in the common ancestor of these four species. Moreover, the ancestral genes were likely drivers as wtf genes in S. octosporus cause meiotic drive. Our findings indicate that meiotic drive systems can be maintained for long evolutionary timespans.
Assuntos
Schizosaccharomyces , Meiose/genética , Schizosaccharomyces/genéticaRESUMO
Hybrid sterility genes define species identities, setting reproductive barriers between distantly related Oryza relatives. They induce allelic-specific selective gametic abnormalities by killing pollens, embryo sacs, or both, and thus resulting in the male specific transmission ratio distortion (mTRD), female specific transmission ratio distortion (f TRD), and/or sex-independent transmission ratio distortion (siTRD) in hybrids. Although more than 50 hybrid sterility genes have been reported, comprehensive analysis on the distributional pattern of TRD systems in Oryza species is limited. In this review, we surveyed the TRD systems and the underlying possible mechanisms in these species. In rice, pollen killers which cause mTRD are often observed in higher frequency than egg killers and gamete eliminators, which are factors affecting f TRD and siTRD, respectively. Due to the rather massive population of pollen grains, their reduction in the number caused by hybrid sterility possesses a smaller selective disadvantage to the hybrid individuals, in contrast to female gamete abortion. The pattern of TRD distribution displays less abundancy in siTRD. It suggests that fixation of siTRD might require a certain time rather than single sex-specific factors. The presence of linked sterility factors worked for mTRD and f TRD, and strength of their linkage in chromosomal regions might determine the type of sterility and TRD. The study of TRD systems has a potential to reveal the relationships between selfish genes and their functions for reproductive isolation.
RESUMO
The gene's-eye view of evolution has played a central but contentious role in evolutionary biology for the past half-century. By envisioning evolutionary history as a struggle between competing selfish genes, it accelerated the shift from organism-centric to gene-centric explanations that began with the emergence population genetics a century ago. At the forefront of this shift were George C. Williams and Richard Dawkins, who advocated an approach to thinking about evolution first introduced by R. A. Fisher. In this Perspective, I discuss the criticism of the gene's-eye view developed by another architect of population genetics, Sewall Wright, whose "On genic and organismic selection" was published in Evolution in 1980. I start by outlining the history of the gene's-eye view and then show how some long-standing differences in opinion over its value can be traced back to disagreements between Fisher and Wright, especially over Fisher's concept of genetic variance and the importance of epistasis. I end with some reflections on the role of genes and organisms in evolutionary explanations.
Assuntos
Evolução Biológica , Seleção Genética , Genética PopulacionalRESUMO
Cell-dependent propagation of the 'self' is the driver of all species, organisms and even genes. Conceivably, elimination of these entities is caused by cellular death. Then, how can genes that cause the death of the same cell evolve? Programmed cell death (PCD) is the gene-dependent self-inflicted death. In multicellular organisms, PCD of a cell confers fitness to the surviving rest of the organism, which thereby allows the selection of genes responsible for PCD. However, PCD in free-living bacteria is intriguing; the death of the cell is the death of the organism. How can such PCD genes be selected in unicellular organisms? The bacterial PCD in a population is proposed to confer fitness to the surviving kin in the form of sporulation, nutrition, infection-containment and matrix materials. While the cell-centred view leading to propositions of 'altruism' is enticing, the gene-centred view of 'selfism' is neglected. In this opinion piece, we reconceptualize the PCD propositions as genetic selfism (death due to loss/mutation of selfish genes) rather than cellular altruism (death for the conferment of fitness to kin). Within the scope and the available evidence, we opine that some of the PCD-like observations in bacteria seem to be the manifestation of genetic selfism by Restriction-Modification systems and Toxin-Antitoxin systems.
Assuntos
Apoptose/fisiologia , Fenômenos Fisiológicos Bacterianos , Bactérias/citologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/genética , Evolução Biológica , Genes Bacterianos/genéticaRESUMO
Segregation distorters are selfish genetic elements that subvert Mendelian inheritance, often by destroying gametes that do not carry the distorter. Simple theoretical models predict that distorter alleles will either spread to fixation or stabilize at some high intermediate frequency. However, many distorters have substantially lower allele frequencies than predicted by simple models, suggesting that key sources of selection remain to be discovered. Here, we measured the fitness of Drosophila melanogaster adults and juveniles carrying zero, one or two copies of three different variants of the naturally occurring supergene Segregation Distorter (SD), in order to investigate why SD alleles remain relatively rare within populations despite being preferentially inherited. First, we show that the three SD variants differ in the severity and dominance of the fitness costs they impose on individuals carrying them. Second, SD-carrying parents produced less fit offspring in some crosses, independent of offspring genotype, indicating that SD alleles can have nongenetic, transgenerational costs in addition to their direct costs. Third, we found that SD carriers sometimes produce a biased offspring sex ratio, perhaps due to off-target effects of SD on the sex chromosomes. Finally, we used a theoretical model to investigate how sex ratio and transgenerational effects alter the population genetics of distorter alleles; accounting for these additional costs helps to explain why real-world segregation distorter alleles are rarer than predicted.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Ativadoras de GTPase/genética , Dosagem de Genes , Aptidão Genética/genética , Modelos Genéticos , Animais , Feminino , Masculino , Razão de MasculinidadeRESUMO
Selfish genes were once controversial, but it is now accepted that the genome contains parasitic elements in addition to a complement of conventional genes. This opinion article argues that 'law-abiding' genes also indulge in game playing to ensure their propagation, so that initially nonessential processes secure a genetic heritage. A gene-centered view of this kind can help to explain otherwise puzzling aspects of biology, including the complexity and stability of living systems.
Assuntos
Evolução Biológica , Evolução Molecular , Genoma/genética , Sequências Repetitivas de Ácido Nucleico/genética , Genômica/tendências , HumanosRESUMO
Gene drives may be used in two ways to curtail vectored diseases. Both involve engineering the drive to spread in the vector population. One approach uses the drive to directly depress vector numbers, possibly to extinction. The other approach leaves intact the vector population but suppresses the disease agent during its interaction with the vector. This second application may use a drive engineered to carry a genetic cargo that blocks the disease agent. An advantage of the second application is that it is far less likely to select vector resistance to block the drive, but the disease agent may instead evolve resistance to the inhibitory cargo. However, some gene drives are expected to spread so fast and attain such high coverage in the vector population that, if the disease agent can evolve resistance only gradually, disease eradication may be feasible. Here we use simple models to show that spatial structure in the vector population can greatly facilitate persistence and evolution of resistance by the disease agent. We suggest simple approaches to avoid some types of spatial structure, but others may be intrinsic to the populations being challenged and difficult to overcome.
RESUMO
Synthetic gene drives may soon be used to suppress or eliminate populations of disease vectors, pathogens, invasive species, and agricultural pests. Recent proposals have focused on using Z-linked gene drives to control species with ZW sex determination, which include Lepidopteran pests, parasitic trematodes, and cane toads. These proposals include Z-linked 'W-shredders', which would suppress populations by cleaving the W chromosome and causing females to produce only sons, as well as Z-linked female-sterilizing gene drives. Here, I use eco-evolutionary simulations to evaluate the potential of some proposed Z-linked gene drives, and to produce recommendations regarding their design and use. The simulations show that W-shredders are likely to be highly effective at eradicating populations provided that resistance to W-shredding cannot evolve. However, W-shredder alleles can invade populations from very low frequencies, making it difficult to eliminate specific populations while leaving nearby populations untouched; this issue may restrict their possible uses.
Assuntos
Evolução Biológica , Bufo marinus , Tecnologia de Impulso Genético , Animais , Feminino , Masculino , Cromossomos SexuaisRESUMO
Restrictionâ»modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, mismatch repair, protein expression, and in biasing DNA uptake. Little is known about archaeal RM systems and DNA methylation. To elucidate further understanding for the role of RM systems and DNA methylation in Archaea, we undertook a survey of the presence of RM system genes and related genes, including orphan DNA methylases, in the halophilic archaeal class Halobacteria. Our results reveal that some orphan DNA methyltransferase genes were highly conserved among lineages indicating an important functional constraint, whereas RM systems demonstrated patchy patterns of presence and absence. This irregular distribution is due to frequent horizontal gene transfer and gene loss, a finding suggesting that the evolution and life cycle of RM systems may be best described as that of a selfish genetic element. A putative target motif (CTAG) of one of the orphan methylases was underrepresented in all of the analyzed genomes, whereas another motif (GATC) was overrepresented in most of the haloarchaeal genomes, particularly in those that encoded the cognate orphan methylase.
Assuntos
Enzimas de Restrição-Modificação do DNA/genética , Euryarchaeota/enzimologia , Metiltransferases/genética , Proteínas Arqueais/genética , Metilação de DNA , Euryarchaeota/genética , Evolução Molecular , Transferência Genética Horizontal , Sequenciamento Completo do Genoma/métodosRESUMO
Botulinum neurotoxins (BoNTs) rank amongst the most potent toxins known. The factors responsible for the emergence of the many known and yet unknown BoNT variants remain elusive. It also remains unclear why anaerobic bacteria that are widely distributed in our environment and normally do not pose a threat to humans, produce such deadly toxins. Even the possibility of accidental toxicity to humans has not been excluded. Here, I review the notion that BoNTs may have specifically evolved to target vertebrates. Considering the extremely complex molecular architecture of the toxins, which enables them to reach the bloodstream, to recognize and enter neurons, and to block neurotransmitter release, it seems highly unlikely that BoNT toxicity to vertebrates is a coincidence. The carcassâ»maggot cycle provides a plausible explanation for a natural role of the toxins: to enable mass reproduction of bacteria, spores, and toxins, using toxin-unaffected invertebrates, such as fly maggots, as the vectors. There is no clear correlation between toxigenicity and a selective advantage of clostridia in their natural habitat. Possibly, non-toxigenic strains profit from carcasses resulting from the action of toxigenic strains. Alternatively, a gene-centered view of toxin evolution would also explain this observation. Toxin-coding mobile genetic elements may have evolved as selfish genes, promoting their own propagation, similar to commensal viruses, using clostridia and other bacteria as the host. Research addressing the role of BoNTs in nature and the origin of toxin variability goes hand in hand with the identification of new toxin variants and the design of improved toxin variants for medical applications. These research directions may also reveal yet unknown natural antidotes against these extremely potent neurotoxins.
Assuntos
Toxinas Botulínicas/genética , Neurotoxinas/genética , Animais , Evolução Biológica , Botulismo , Clostridium botulinum/genética , DNA Bacteriano , HumanosRESUMO
Unbiased allele transmission into progeny is a fundamental genetic concept canonized as Mendel's Law of Segregation. Not all alleles, however, abide by the law. Killer meiotic drivers are ultra-selfish DNA sequences that are transmitted into more than half (sometimes all) of the meiotic products generated by a heterozygote. As their name implies, these loci gain a transmission advantage in heterozygotes by destroying otherwise viable meiotic products that do not inherit the driver. We review and classify killer meiotic drive genes across a wide spectrum of eukaryotes. We discuss how analyses of these ultra-selfish genes can lead to greater insight into the mechanisms of gametogenesis and the causes of infertility.
Assuntos
Alelos , Segregação de Cromossomos/genética , Genética/tendências , Meiose/genética , Eucariotos , HeterozigotoRESUMO
Sex-linked segregation distorters cause offspring sex ratios to differ from equality. Theory predicts that such selfish alleles may either go to fixation and cause extinction, reach a stable polymorphism or initiate an evolutionary arms race with genetic modifiers. The extent to which a sex ratio distorter follows any of these trajectories in nature is poorly known. Here, we used X-linked sequence and simple tandem repeat data for three sympatric species of stalk-eyed flies (Teleopsis whitei and two cryptic species of T. dalmanni) to infer the evolution of distorting X chromosomes. By screening large numbers of field and recently laboratory-bred flies, we found no evidence of males with strongly female-biased sex ratio phenotypes (SR) in one species but high frequencies of SR males in the other two species. In the two species with SR males, we find contrasting patterns of X-chromosome evolution. T. dalmanni-1 shows chromosome-wide differences between sex-ratio (XSR ) and standard (XST ) X chromosomes consistent with a relatively old sex-ratio haplotype based on evidence including genetic divergence, an inversion polymorphism and reduced recombination among XSR chromosomes relative to XST chromosomes. In contrast, we found no evidence of genetic divergence on the X between males with female-biased and nonbiased sex ratios in T. whitei. Taken with previous studies that found evidence of genetic suppression of sex ratio distortion in this clade, our results illustrate that sex ratio modification in these flies is undergoing recurrent evolution with diverse genomic consequences.
Assuntos
Dípteros , Evolução Molecular , Polimorfismo Genético , Razão de Masculinidade , Animais , Olho , Feminino , Masculino , Cromossomo XRESUMO
Meiotic drivers are selfish genes that bias their transmission into gametes, defying Mendelian inheritance. Despite the significant impact of these genomic parasites on evolution and infertility, few meiotic drive loci have been identified or mechanistically characterized. Here, we demonstrate a complex landscape of meiotic drive genes on chromosome 3 of the fission yeasts Schizosaccharomyces kambucha and S. pombe. We identify S. kambucha wtf4 as one of these genes that acts to kill gametes (known as spores in yeast) that do not inherit the gene from heterozygotes. wtf4 utilizes dual, overlapping transcripts to encode both a gamete-killing poison and an antidote to the poison. To enact drive, all gametes are poisoned, whereas only those that inherit wtf4 are rescued by the antidote. Our work suggests that the wtf multigene family proliferated due to meiotic drive and highlights the power of selfish genes to shape genomes, even while imposing tremendous costs to fertility.
Assuntos
Antídotos/metabolismo , Produtos Biológicos/metabolismo , Genes Fúngicos , Meiose , Venenos/metabolismo , Schizosaccharomyces/genética , Seleção Genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologiaRESUMO
Mycobacterium tuberculosis H37Rv escapes host-generated stresses by entering a dormant persistent state. Activation of toxin-antitoxin modules is one of the mechanisms known to trigger such a state with low metabolic activity. M. tuberculosis harbors a large number of TA systems mostly located within discernible genomic islands. We have investigated the parDE2 operon of M. tuberculosis H37Rv encoding MParE2 toxin and MParD2 antitoxin proteins. The parDE2 locus was transcriptionally active from growth phase till late stationary phase in M. tuberculosis. A functional promoter located upstream of parD2 GTG start-site was identified by 5'-RACE and lacZ reporter assay. The MParD2 protein transcriptionally regulated the P parDE2 promoter by interacting through Arg16 and Ser15 residues located in the N-terminus. In Escherichia coli, ectopic expression of MParE2 inhibited growth in early stages, with a drastic reduction in colony forming units. Live-dead analysis revealed that the reduction was not due to cell death alone but due to formation of viable but non-culturable cells (VBNCs) also. The toxic activity of the protein, identified in the C-terminal residues Glu98 and Arg102, was neutralized by the antitoxin MParD2, both in vivo and in vitro. MParE2 inhibited mycobacterial DNA gyrase and interacted with the GyrB subunit without affecting its ATPase activity. Introduction of parE2 gene in the heterologous M. smegmatis host prevented growth and colony formation by the transformed cells. An M. smegmatis strain containing the parDE2 operon also switched to a non-culturable phenotype in response to oxidative stress. Loss in colony-forming ability of a major part of the MParE2 expressing cells suggests its potential role in dormancy, a cellular strategy for adaptation to environmental stresses. Our study has laid the foundation for future investigations to explore the physiological significance of parDE2 operon in mycobacterial pathogenesis.
RESUMO
A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.
Assuntos
Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Masculino , Camundongos , Modelos Genéticos , Mutação , Seleção GenéticaRESUMO
Restriction-modification (R-M) systems are widespread among prokaryotes and, depending on their type, may be viewed as selfish genetic elements that persist as toxin-antitoxin modules, or as cellular defense systems against phage infection that confer a selective advantage to the host bacterium. Studies in the last decade have made it amply clear that these two options do not exhaust the list of possible biological roles for R-M systems. Their presence in a cell may also have a bearing on other processes such as horizontal gene transfer and gene regulation. From genome sequencing and experimental data, we know that Bacillus anthracis encodes at least three methylation-dependent (typeIV) restriction endonucleases (RE), and an orphan DNA methyltransferase. In this article, we first present an outline of our current knowledge of R-M systems in B. anthracis. Based on available DNA sequence data, and on our current understanding of the functions of similar genes in other systems, we conclude with hypotheses on the possible roles of the three REs and the orphan DNA methyltransferase.
RESUMO
Like several other species of Drosophila, D. quinaria is polymorphic for X-chromosome meiotic drive; matings involving males that carry a "sex-ratio" X chromosome (XSR ) result in the production of strongly female-biased offspring sex ratios (Jaenike 1996). A survey of isofemale lines of D. quinaria from several populations reveals that there is genetic variation for partial suppression of this meiotic drive. Crossing experiments show that there is Y-linked, and probably autosomal, variation for suppression of drive. Y-linked suppressors of X-chromosome drive have now been described in several species of Diptera. I develop a simple model for the maintenance of Y-chromosome polymorphism in species polymorphic for X-linked meiotic drive. One interesting feature of this model is that, if there is a stable Y-chromosome polymorphism, then the equilibrium frequency of the standard and sex-ratio X chromosomes is determined solely by Y-chromosome parameters, not by the fitness effects of the different X chromosomes on their carriers. This model suggests that Y-chromosome polymorphism may be easier to maintain than previously thought, and I hypothesize that karyotypic variation in Y chromosomes will be found to be associated with suppression of sex-ratio meiotic drive in other species of Drosophila.