Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.918
Filtrar
1.
J Transl Med ; 22(1): 605, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951874

RESUMO

BACKGROUND: Uveal melanoma (UM), the most common adult intraocular tumor, is characterized by high malignancy and poor prognosis in advanced stages. Angiogenesis is critical for UM development, however, not only the role of vascular endothelial dysfunction in UM remains unknown, but also their analysis at the single-cell level has been lacking. A comprehensive analysis is essential to clarify the role of the endothelium in the development of UM. METHODS: By using single-cell RNA transcriptomics data of 11 cases of primary and liver metastasis UM, we analyzed the endothelial cell status. In addition, we analyzed and validated ECs in the in vitro model and collected clinical specimens. Subsequently, we explored the impact of endothelial dysfunction on UM cell migration and explored the mechanisms responsible for the endothelial cell abnormalities and the reasons for their peripheral effects. RESULTS: UM metastasis has a significantly higher percentage of vascular endothelial cells compared to in situ tumors, and endothelial cells in metastasis show significant senescence. Senescent endothelial cells in metastatic tumors showed significant Krüppel-like factor 4 (KLF4) upregulation, overexpression of KLF4 in normal endothelial cells induced senescence, and knockdown of KLF4 in senescent endothelium inhibited senescence, suggesting that KLF4 is a driver gene for endothelial senescence. KLF4-induced endothelial senescence drove tumor cell migration through a senescence-associated secretory phenotype (SASP), of which the most important component of the effector was CXCL12 (C-X-C motif chemokine ligand 12), and participated in the composition of the immunosuppressive microenvironment. CONCLUSION: This study provides an undesirable insight of senescent endothelial cells in promoting UM metastasis.


Assuntos
Movimento Celular , Senescência Celular , Células Endoteliais , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas , Melanoma , Análise de Célula Única , Neoplasias Uveais , Humanos , Neoplasias Uveais/patologia , Neoplasias Uveais/genética , Melanoma/patologia , Melanoma/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
2.
Biomater Adv ; 163: 213938, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959650

RESUMO

Endothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations. The aged and senescent phenotypes were more fragile to stretch-induced damage. Prominent damage was detected by immunofluorescence and scanning electron microscopy as intercellular and intracellular void formation. Damage increased proportionally to the applied level of deformation and, for the aged and senescent phenotype, induced significant detachment of cells at lower levels of stretch compared to the young counterpart. Based on the phenotypic difference in cell-substrate adhesion of senescent cells indicating more mature focal adhesions, a discrete network model of endothelial cells being stretched was developed. The model showed that the more affine deformation of senescent cells increased their intracellular energy, thus enhancing the tendency for cellular damage and impending detachment. Next to quantifying for the first-time critical levels of endothelial stretch, the present results indicate that young cells are more resilient to deformation and that the fragility of senescent cells may be associated with their stronger adhesion to the substrate.

3.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960479

RESUMO

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Assuntos
Envelhecimento , Organoides , Humanos , Organoides/metabolismo , Envelhecimento/metabolismo , Proteínas de Membrana/metabolismo , Senescência Celular , Feminino , Alicerces Teciduais/química , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/citologia
4.
Front Cell Dev Biol ; 12: 1368711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946802

RESUMO

Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.

6.
Front Endocrinol (Lausanne) ; 15: 1378356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948528

RESUMO

Background: Cellular senescence is a common biological process with a well-established link to cancer. However, the impact of cellular senescence on tumor progression remains unclear. To investigate this relationship, we utilized transcriptomic data from a senescence gene set to explore the connection between senescence and cancer prognosis. Methods: We developed the senescence score by the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. We obtained transcriptomic information of the senescence gene set from The Cancer Genome Atlas (TCGA) program. Additionally, we created a nomogram that integrates these senescence scores with clinical characteristics, providing a more comprehensive tool for prognosis evaluation. Results: We calculated the senescence score based on the expression level of 42 senescence-related genes. We established the nomogram based on the senescence score and clinical characteristics. The senescence score showed a positive correlation with epithelial-to-mesenchymal transition, cell cycle, and glycolysis, and a negative correlation with autophagy. Furthermore, we carried out Gene Ontology (GO) analysis to explore the signaling pathways and biological process in different senescence score groups. Conclusions: The senescence score, a novel tool constructed in this study, shows promise in predicting survival outcomes across various cancer types. These findings not only highlight the complex interplay between senescence and cancer but also indicate that cellular senescence might serve as a biomarker for tumor prognosis.


Assuntos
Senescência Celular , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Nomogramas , Transcriptoma , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
7.
Transl Androl Urol ; 13(6): 1014-1023, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983468

RESUMO

Background: Age-related kidney failure is often induced by a decrease in the bioavailability of tubular epithelial cells in elderly chronic kidney disease (CKD) patients. BRD4, an epigenetic regulator and a member of the bromodomain and extraterminal (BET) protein family, acts as a super-enhancer (SE) organizing and regulating genes expression during embryogenesis and cancer development. But the physiological function of BRD4 in normal cells has been less studied. This study aimed to research certain biological roles of BRD4 in the process of normal cell aging and discuss the potential mechanisms. Methods: In this study, we investigated the biological functions of BRD4 proteins in the aging of renal tubular cells. At first, we used a D-galactose (D-gal) and BRD4 inhibitor (Abbv-075) to replicate kidney senescence in vivo. D-gal and Abbv-075 were then used to measure the aging-related changes, such as changes in cell cycle, ß-galactosidase activity, cell migration, and p16 protein expression in vitro. At last, we knocked down and over-expressed BRD4 to investigate the aging-related physiological phenomena in renal tubular cells. Results: In vitro, D-gal treatment induced noticeable aging-related changes such as inducing cell apoptosis and cell cycle arrest, increasing ß-galactosidase activity as well as up-regulating p16 protein expression in primary human tubular epithelial cells. In the aging mice model, D-gal significantly induced renal function impairment and attenuated BRD4 protein expression. At the same time, the BRD4 inhibitor (Abbv-075) was able to mimic D-gal-induced cell senescence. In vivo, Abbv-075 also decreased kidney function and up-regulated p21 protein expression. When we knocked down the expression of BRD4, the senescence-associated ß-galactosidase (SA-ß-gal) activity increased dramatically, cell migration was inhibited, and the proportion of cells in the G0/G1 phase increased. Additionally, the knockdown also promoted the expression of the senescence-related proteins p16. When the renal tubular cells were overexpressed with BRD4, cell aging-related indicators were reversed in the D-gal-induced cell aging model. Conclusions: BRD4 appears to have an active role in the aging of renal tubular cells in vivo and in vitro. The findings also suggest that BRD4 inhibitors have potential nephrotoxic effects for oncology treatment. BRD4 may be a potential therapeutic biomarker and drug target for aging-related kidney diseases, which warrants additional studies.

8.
J Dermatol Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38960840

RESUMO

BACKGROUND: Psoriasis is an inflammatory skin disease with unclear pathogenesis and unmet therapeutic needs. OBJECTIVE: To investigate the role of senescent CD4+ T cells in psoriatic lesion formation and explore the application of senolytics in treating psoriasis. METHODS: We explored the expression levels of p16INK4a and p21, classical markers of cellular senescence, in CD4+ T cells from human psoriatic lesions and imiquimod (IMQ)-induced psoriatic lesions. We prepared a senolytic gel using B-cell lymphoma 2 (BCL-2) inhibitor ABT-737 and evaluated its therapeutic efficacy in treating psoriasis. RESULTS: Using multispectrum immunohistochemistry (mIHC) staining, we detected increased expression levels of p16INK4a and p21 in CD4+ T cells from psoriatic lesions. After topical application of ABT-737 gel, significant alleviation of IMQ-induced psoriatic lesions was observed, with milder pathological alterations. Mechanistically, ABT-737 gel significantly decreased the percentage of senescent cells, expression of T cell receptor (TCR) α and ß chains, and expression of Tet methylcytosine dioxygenase 2 (Tet2) in IMQ-induced psoriatic lesions, as determined by mIHC, high-throughput sequencing of the TCR repertoire, and RT-qPCR, respectively. Furthermore, the severity of psoriatic lesions in CD4creTet2f/f mice was milder than that in Tet2f/f mice in the IMQ-induced psoriasis model. CONCLUSION: We revealed the roles of senescent CD4+ T cells in developing psoriasis and highlighted the therapeutic potential of topical ABT-737 gel in treating psoriasis through the elimination of senescent cells, modulation of the TCR αß repertoire, and regulation of the TET2-Th17 cell pathway.

9.
Aging Cell ; : e14259, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961628

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder resulting from de novo mutations in the lamin A gene. Children with HGPS typically pass away in their teenage years due to cardiovascular diseases such as atherosclerosis, myocardial infarction, heart failure, and stroke. In this study, we characterized the G608G HGPS mouse model and explored cardiac and skeletal muscle function, along with senescence-associated phenotypes in fibroblasts. Homozygous G608G HGPS mice exhibited cardiac dysfunction, including decreased cardiac output and stroke volume, and impaired left ventricle relaxation. Additionally, skeletal muscle exhibited decreased isometric tetanic torque, muscle atrophy, and increased fibrosis. HGPS fibroblasts showed nuclear abnormalities, decreased proliferation, and increased expression of senescence markers. These findings provide insights into the pathophysiology of the G608G HGPS mouse model and inform potential therapeutic strategies for HGPS.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38961839

RESUMO

BACKGROUND: Epithelial to mesenchymal transition (EMT) is considered as one of the senescence processes; reportedly, anti-senescence therapies effectively reduce EMT. Some models have shown anti-senescence effects with the use of sodium-glucose cotransporter-2 (SGLT2) inhibitor. Therefore, our study investigated the anti-senescence effects of empagliflozin as a SGLT2 inhibitor in a peritoneal fibrosis model and their impact on EMT inhibition. METHODS: For in vitro study, human peritoneal mesothelial cells (HPMCs) were isolated and grown in a 96-well plate. The cell media were exchanged with serum-free M199 medium with D-Glucose, with or without empagliflozin. All animal experiments were carried out in male mice. Mice were randomly classified into three treatment groups based on peritoneal dialysis (PD) or empagliflozin. We evaluated changes in senescence and EMT markers in HPMCs and PD model. RESULTS: HPMCs treated with glucose transformed from cobble stone to spindle shape, resulting in EMT. Empagliflozin attenuated these morphologic changes. Reactive oxygen species production, DNA damage, senescence, and EMT markers were increased by glucose treatment; however, co-treatment with glucose and empagliflozin attenuated these changes. For the mice with PD, an increase in thickness, collagen deposition, staining for senescence or EMT markers of the parietal peritoneum was observed, which however, was attenuated by co-treatment with empagliflozin. p53, p21, and p16 increased in mice with PD compared to that in the control group; however, these changes were decreased by empagliflozin. CONCLUSION: Empagliflozin effectively attenuated glucose-induced EMT in HPMCs through a decrease in senescence. Co-treatment with empagliflozin improved peritoneal thickness and fibrosis in PD.

11.
BMC Neurosci ; 25(1): 31, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965498

RESUMO

BACKGROUND: Most vocal learning species exhibit an early critical period during which their vocal control neural circuitry facilitates the acquisition of new vocalizations. Some taxa, most notably humans and parrots, retain some degree of neurobehavioral plasticity throughout adulthood, but both the extent of this plasticity and the neurogenetic mechanisms underlying it remain unclear. Differential expression of the transcription factor FoxP2 in both songbird and parrot vocal control nuclei has been identified previously as a key pattern facilitating vocal learning. We hypothesize that the resilience of vocal learning to cognitive decline in open-ended learners will be reflected in an absence of age-related changes in neural FoxP2 expression. We tested this hypothesis in the budgerigar (Melopsittacus undulatus), a small gregarious parrot in which adults converge on shared call types in response to shifts in group membership. We formed novel flocks of 4 previously unfamiliar males belonging to the same age class, either "young adult" (6 mo - 1 year) or "older adult" (≥ 3 year), and then collected audio-recordings over a 20-day learning period to assess vocal learning ability. Following behavioral recording, immunohistochemistry was performed on collected neural tissue to measure FoxP2 protein expression in a parrot vocal learning center, the magnocellular nucleus of the medial striatum (MMSt), and its adjacent striatum. RESULTS: Although older adults show lower vocal diversity (i.e. repertoire size) and higher absolute levels of FoxP2 in the MMSt than young adults, we find similarly persistent downregulation of FoxP2 and equivalent vocal plasticity and vocal convergence in the two age cohorts. No relationship between individual variation in vocal learning measures and FoxP2 expression was detected. CONCLUSIONS: We find neural evidence to support persistent vocal learning in the budgerigar, suggesting resilience to aging in the open-ended learning program of this species. The lack of a significant relationship between FoxP2 expression and individual variability in vocal learning performance suggests that other neurogenetic mechanisms could also regulate this complex behavior.


Assuntos
Envelhecimento , Fatores de Transcrição Forkhead , Aprendizagem , Vocalização Animal , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vocalização Animal/fisiologia , Masculino , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Aprendizagem/fisiologia , Melopsittacus/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
12.
Clin Epigenetics ; 16(1): 86, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965562

RESUMO

BACKGROUND: Presbycusis, also referred to as age-related hearing loss (ARHL), is a condition that results from the cumulative effects of aging on an individual's auditory capabilities. Given the limited understanding of epigenetic mechanisms in ARHL, our research focuses on alterations in chromatin-accessible regions. METHODS: We employed assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in conjunction with unique identifier (UID) mRNA-seq between young and aging cochleae, and conducted integrated analysis as well as motif/TF-gene prediction. Additionally, the essential role of super-enhancers (SEs) in the development of ARHL was identified by comparative analysis to previous research. Meanwhile, an ARHL mouse model and an aging mimic hair cell (HC) model were established with a comprehensive identification of senescence phenotypes to access the role of SEs in ARHL progression. RESULTS: The control cochlear tissue exhibited greater chromatin accessibility than cochlear tissue affected by ARHL. Furthermore, the levels of histone 3 lysine 27 acetylation were significantly depressed in both aging cochlea and aging mimic HEI-OC1 cells, highlighting the essential role of SEs in the development of ARHL. The potential senescence-associated super-enhancers (SASEs) of ARHL were identified, most of which exhibited decreased chromatin accessibility. The majority of genes related to the SASEs showed obvious decreases in mRNA expression level in aging HCs and was noticeably altered following treatment with JQ1 (a commonly used SE inhibitor). CONCLUSION: The chromatin accessibility in control cochlear tissue was higher than that in cochlear tissue affected by ARHL. Potential SEs involved in ARHL were identified, which might provide a basis for future therapeutics targeting SASEs related to ARHL.


Assuntos
Envelhecimento , Cromatina , Cóclea , Elementos Facilitadores Genéticos , Presbiacusia , Animais , Camundongos , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Envelhecimento/genética , Presbiacusia/genética , Presbiacusia/metabolismo , Elementos Facilitadores Genéticos/genética , Transcriptoma/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Histonas/metabolismo , Histonas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino
13.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957039

RESUMO

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doenças Cardiovasculares , Senescência Celular , Células Progenitoras Endoteliais , Leucócitos Mononucleares , MicroRNAs , Proteínas Quinases p38 Ativadas por Mitógeno , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Células Progenitoras Endoteliais/metabolismo , Senescência Celular/genética , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Masculino , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Feminino , Idoso , Neovascularização Fisiológica/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Adulto , Fatores de Risco
14.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987851

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Assuntos
Senescência Celular , Células Epiteliais , Exossomos , Túbulos Renais , Macrófagos , MicroRNAs , Telômero , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Exossomos/metabolismo , Exossomos/genética , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Macrófagos/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Camundongos , Telômero/genética , Telômero/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Masculino , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fibrose/genética , Angiotensina II
15.
J Exp Clin Cancer Res ; 43(1): 188, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965605

RESUMO

BACKGROUND: The vast majority of lncRNAs have low expression abundance, which greatly limits their functional range and impact. As a high expression abundance lncRNA, FGD5-AS1's non-ceRNA biological function in cancer is unclear. METHODS: RNA-seq studies and chromatin immunoprecipitation (Chip) assays were performed to identify ZEB1-regulated lncRNAs. RNA sequencing, RNA pulldown, RNA Immunoprecipitation assays, and rescue assays were conducted to explore the molecular mechanisms of FGD5-AS1 in GC. RESULTS: As one of the most abundant lncRNAs in cells, FGD5-AS1 has been shown to be transcriptionally activated by ZEB1, thus closely related to epithelial-mesenchymal transition (EMT) signaling. Clinical analysis showed that FGD5-AS1 overexpression was clinically associated with lymph node metastasis, and predicted poor survival in GC. Loss-of-function studies confirmed that FGD5-AS1 knockdown inhibited GC proliferation and induced cisplatin chemosensibility, cell senescence, and DNA damage in GC cells. Mechanismically, FGD5-AS1 is a YBX1-binding lncRNA due to its mRNA contains three adjacent structural motifs (UAAUCCCA, ACCAGCCU, and CAGUGAGC) that can be recognized and bound by YBX1. And this RNA-protein interaction prolonged the half-life of the YBX1 protein in GC. Additionally, a rescue assay showed that FGD5-AS1 promotes GC by repressing cell senescence and ROS production via YBX1. CONCLUSION: FGD5-AS1 is a cellular high-abundant lncRNA that is transcriptionally regulated by ZEB1. FGD5-AS1 overexpression promoted GC progression by inhibiting cell senescence and ROS production through binding and stabilizing the YBX1 protein.


Assuntos
Proliferação de Células , Senescência Celular , RNA Longo não Codificante , Espécies Reativas de Oxigênio , Neoplasias Gástricas , Proteína 1 de Ligação a Y-Box , Humanos , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal , Fatores de Troca do Nucleotídeo Guanina
16.
Int J Biol Macromol ; 275(Pt 1): 133659, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969045

RESUMO

The age-related alterations in pituitary function, including changes in prolactin (PRL) production contributes to the systemic susceptibility to age-related diseases. Our previous research has shown the involvement of Nrg1 in regulating the expression and secretion of PRL. However, the precise role of Nrg1 in mitigating the senescence of pituitary lactotrophs and the underlying mechanisms are yet to be comprehended. Here, data from the GEPIA database was used to evaluate the association between transient receptor potential cation channel subfamily M member 8 (TRPM8) and PRL in normal human pituitary tissues, followed by immunofluorescence verification using a human pituitary tissue microarray. TRPM8 levels showed a significant positive association with PRL expression in normal human pituitary tissues, and both TRPM8 and PRL levels declined during aging, suggesting that TRPM8 may regulate pituitary aging by affecting PRL production. It was also found that treatment with exogenous neuregulin 1 (Nrg1) markedly delayed the senescence of GH3 cells (rat lactotroph cell line) generated by D-galactose (D-gal). In addition, melatonin reduced the levels of senescence-related markers in senescent pituitary cells by promoting Nrg1 / ErbB4 signaling, stimulating PRL expression and secretion. Further investigation showed that Nrg1 attenuated senescence in pituitary cells by increasing TRPM8 expression. Downregulation of TRPM8 activation eliminated Nrg1-mediated amelioration of pituitary cell senescence. These findings demonstrate the critical function of Nrg1 / ErbB signaling in delaying pituitary lactotroph cell senescence and enhancing PRL production via promoting TRPM8 expression under the modulation of melatonin.

17.
Genome Med ; 16(1): 85, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956711

RESUMO

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Assuntos
Envelhecimento , Metilação de DNA , Longevidade , Humanos , Animais , Metilação de DNA/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Descoberta de Drogas/métodos , Senescência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Drosophila , Células Cultivadas , Sirolimo/farmacologia
18.
J Hazard Mater ; 476: 135103, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972203

RESUMO

An earlier study found that respiratory cadmium chloride (CdCl2) exposure caused COPD-like lung injury. This study aimed to explore whether mitochondrial dysfunction-mediated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury. Adult C57BL/6 mice were exposed to CdCl2 (10 mg/L) aerosol for six months. Beta-galactosidase-positive cells, p21 and p16 were increased in CdCl2-exposed mouse lungs. The in vitro experiments showed that γ-H2AX was elevated in CdCl2-exposed alveolar epithelial cells. The cGAS-STING pathway was activated in CdCl2-exposed alveolar epithelial cells and mouse lungs. Cxcl1, Cxcl9, Il-10, Il-1ß and Mmp2, several senescence-associated secretory phenotypes (SASP), were upregulated in CdCl2-exposed alveolar epithelial cells. Mechanistically, CdCl2 exposure caused SIRT3 reduction and mitochondrial dysfunction in mouse lungs and alveolar epithelial cells. The in vitro experiment found that Sirt3 overexpression attenuated CdCl2-induced alveolar epithelial senescence and SASP. The in vivo experiments showed that Sirt3 gene knockout exacerbated CdCl2-induced alveolar epithelial senescence, alveolar structure damage, airway inflammation and pulmonary function decline. NMN, an NAD+ precursor, attenuated CdCl2-induced alveolar epithelial senescence and SASP in mouse lungs. Moreover, NMN supplementation prevented CdCl2-induced COPD-like alveolar structure damage, epithelial-mesenchymal transition and pulmonary function decline. These results suggest that mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury.

19.
J Vet Med Sci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972751

RESUMO

In equine regenerative medicine using bone marrow-derived mesenchymal stem/stromal cells (BM-MSC), the importance of the quality management of BM-MSC has been widely recognized. However, there is little information concerning the relationship between cellular senescence and the stemness in equine BM-MSC. In this study, we showed that stemness markers (NANOG, OCT4, SOX2 and telomerase reverse transcriptase) and colony forming unit-fibroblast apparently decreased accompanied with incidence of senescence-associated ß-galactosidase-positive cells by repeated passage. Additionally, we suggested that down-regulation of cell proliferation in senescent BM-MSC was related to increased expression of cyclin-dependent kinase inhibitor 2B (CDKN2B). On the other hand, forced expression of NANOG into senescent BM-MSC brought upregulation of several stemness markers and downregulation of CKDN2B accompanied with restoration of proliferation potential and osteogenic ability. These results suggested that expression of NANOG was important for the maintenance of the stemness in equine BM-MSC.

20.
Physiol Mol Biol Plants ; 30(6): 877-891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974354

RESUMO

Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01465-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA