Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35459055

RESUMO

In this paper, a comparative review for maximum power point tracking (MPPT) techniques based on model predictive control (MPC) is presented in the first part. Generally, the implementation methods of MPPT-based MPC can be categorized into the fixed switching technique and the variable switching one. On one side, the fixed switching method uses a digital observer for the photovoltaic (PV) model to predict the optimal control parameter (voltage or current). Later, this parameter is compared with the measured value, and a proportional-integral (PI) controller is employed to get the duty cycle command. On the other side, the variable switching algorithm relies on the discrete-time model of the utilized converter to generate the switching signal without the need for modulators. In this regard, new perspectives are inspired by the MPC technique to implement both methods (fixed and variable switching), where a simple procedure is used to eliminate the PI controller in the fixed switching method. Furthermore, a direct realization technique for the variable switching method is suggested, in which the discretization of the converter's model is not required. This, in turn, simplifies the application of MPPT-based MPC to other converters. Furthermore, a reduced sensor count is accomplished. All conventional and proposed methods are compared using experimental results under different static and dynamic operating conditions.

2.
Clin Neurophysiol ; 130(3): 352-358, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30669011

RESUMO

OBJECTIVE: To accurately deliver a source-estimated neurofeedback (NF) signal developed on a 128-sensors EEG system on a reduced 32-sensors EEG system. METHODS: A linearly constrained minimum variance beamformer algorithm was used to select the 64 sensors which contributed most highly to the source signal. Monte Carlo-based sampling was then used to randomly generate a large set of reduced 32-sensors montages from the 64 beamformer-selected sensors. The reduced montages were then tested for their ability to reproduce the 128-sensors NF. The high-performing montages were then pooled and analyzed by a k-means clustering machine learning algorithm to produce an optimized reduced 32-sensors montage. RESULTS: Nearly 4500 high-performing montages were discovered from the Monte Carlo sampling. After statistically analyzing this pool of high performing montages, a set of refined 32-sensors montages was generated that could reproduce the 128-sensors NF with greater than 80% accuracy for 72% of the test population. CONCLUSION: Our Monte Carlo reduction method was used to create reliable reduced-sensors montages which could be used to deliver accurate NF in clinical settings. SIGNIFICANCE: A translational pathway is now available by which high-density EEG-based NF measures can be delivered using clinically accessible low-density EEG systems.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Neurorretroalimentação , Humanos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA