Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010145

RESUMO

BACKGROUND: Structural variation (SV) detection methods using third-generation sequencing data are widely employed, yet accurately detecting SVs remains challenging. Different methods often yield inconsistent results for certain SV types, complicating tool selection and revealing biases in detection. RESULTS: This study comprehensively evaluates 53 SV detection pipelines using simulated and real data from PacBio (CLR: Continuous Long Read, CCS: Circular Consensus Sequencing) and Nanopore (ONT) platforms. We assess their performance in detecting various sizes and types of SVs, breakpoint biases, and genotyping accuracy with various sequencing depths. Notably, pipelines such as Minimap2-cuteSV2, NGMLR-SVIM, PBMM2-pbsv, Winnowmap-Sniffles2, and Winnowmap-SVision exhibit comparatively higher recall and precision. Our findings also show that combining multiple pipelines with the same aligner, like pbmm2 or winnowmap, can significantly enhance performance. The individual pipelines' detailed ranking and performance metrics can be viewed in a dynamic table: http://pmglab.top/SVPipelinesRanking . CONCLUSIONS: This study comprehensively characterizes the strengths and weaknesses of numerous pipelines, providing valuable insights that can improve SV detection in third-generation sequencing data and inform SV annotation and function prediction.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Variação Estrutural do Genoma , Software , Análise de Sequência de DNA/métodos
2.
Interdiscip Sci ; 8(1): 28-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26358141

RESUMO

Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.


Assuntos
Computadores , Alinhamento de Sequência/instrumentação , Análise de Sequência de DNA/instrumentação , Software , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA