Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 112(1): 68-83, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912411

RESUMO

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.


Assuntos
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
2.
Proc Natl Acad Sci U S A ; 116(12): 5653-5658, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833384

RESUMO

Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.


Assuntos
Vigor Híbrido/genética , Oryza/genética , Alelos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Frequência do Gene/genética , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Genômica , Vigor Híbrido/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA , Transcriptoma/genética
3.
Rice (N Y) ; 11(1): 17, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29629478

RESUMO

Hybrid rice has been successfully used for commercial rice production for 40 years in China. Shanyou 63, a mega rice hybrid, derived from the parents Zhenshan 97A and Minghui 63, was a milestone for China's hybrid rice development and production because of its high yield and wide adaptability. It was planted in 16 provinces of the country on 17% of the national hybrid rice area annually during the 29 years from 1984 to 2012. The hybrid and its parents have also been widely used for basic and agronomic studies related to rice heterosis, stress tolerance, molecular markers and genomics. We review the development of the hybrid and its parents and their major characteristics for the purpose of learning from the history and guiding future hybrid rice development. The history and development experience show that a successful hybrid rice variety should have multiple traits, including high yield, wide adaptability, resistances to major diseases, and high rice quality that meets the demands of consumers. From the breeding aspect, hybrid rice provides the advantage of combining elite traits or genes from different types of parents, such as those from subspecies of indica and japonica, into a single variety. Farmers prefer not only a variety with high yield potential, but also stable yields and local adaptability.

4.
Ecotoxicol Environ Saf ; 132: 196-201, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27322607

RESUMO

The genetically modified (GM) rice Bt-ShanYou63 (Bt-SY63) received an official biosafety certificate while its safety remained in dispute. In a lifelong study, Daphnia magna were experimentally fed a basal diet of rice flours from Bt-SY63 or its parental rice ShanYou63 (SY63) at concentrations of 0.2mg, 0.3mg, or 0.4mgC (per individual per day). Overall the survival, body size, and reproduction of the animals were comparable between Bt-SY63 and ShanYou63.. The results showed that no significant differences were observed in growth and reproduction parameters between D. magna fed GM and non-GM flour and no dose-related changes occurred in all the values. Based on the different parameters assessed, the GM rice Bt-SY63 is a safe food source for D. magna that does not differ in quality from non-GM rice.


Assuntos
Proteínas de Bactérias/genética , Daphnia , Endotoxinas/genética , Proteínas Hemolisinas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Animais , Toxinas de Bacillus thuringiensis , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Dieta , Inseticidas , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA