Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558477

RESUMO

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Embrião não Mamífero , Testes de Toxicidade , Poluentes Químicos da Água , Animais , Testes de Toxicidade/métodos , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alternativas aos Testes com Animais , Cyprinidae , Crustáceos/efeitos dos fármacos , Compostos de Anilina/toxicidade , Peixes
2.
J Toxicol Environ Health A ; 87(1): 1-21, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830742

RESUMO

The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.


Assuntos
Cyprinidae , Microbioma Gastrointestinal , Peixes Listrados , Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Peixes Listrados/genética , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , RNA Ribossômico 16S , Hidrocarbonetos , Golfo do México , Poluentes Químicos da Água/toxicidade
3.
Aquat Toxicol ; 248: 106189, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537357

RESUMO

Quantitative proteomic changes in the liver of adult males of Sheepshead minnow (Cyprinodon variegatus) upon exposure to ethinyl estradiol (EE2) were assessed to provide an advanced understanding of the metabolic pathways affected by estrogenic endocrine disruption in marine fish, and to identify potential novel molecular biomarkers for the environmental exposure to estrogens. From a total of 3188 identified protein groups (hereafter proteins), 463 showed a statistically significant difference in their abundance between EE2 treatment and solvent control samples. The most affected biological processes upon EE2 exposure were related to ribosomal biogenesis, protein synthesis and transport of nascent proteins to endoplasmic reticulum, and nuclear mRNA catabolism. Within the group of upregulated proteins, a subset of 14 proteins, involved in egg production (Vitellogenin, Zona Pellucida), peptidase activity (Cathepsine E, peptidase S1, Serine/threonine-protein kinase PRP4 homolog, Isoaspartyl peptidase and Whey acidic protein), and nucleic acid binding (Poly [ADP-ribose] polymerase 14) were significantly upregulated with fold-change values higher than 3. In contrast, Collagen alpha-2, involved in the process of response to steroid hormones, among others, was significantly downregulated (fold change = 0.2). This pattern of alterations in the liver proteome of adult males of C. variegatus can be used to identify promising novel biomarkers for the characterization of exposure of marine fish to estrogens. The Whey acidic protein-like showed the highest upregulation in EE2-exposed individuals (21-fold over controls), suggesting the utility of abundance levels of this protein in male liver as a novel biomarker of xenoestrogen exposure.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Etinilestradiol/toxicidade , Peixes/metabolismo , Peixes Listrados/metabolismo , Fígado , Masculino , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Proteômica , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Environ Pollut ; 300: 118936, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124124

RESUMO

The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 µg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Masculino , Fenóis , Proteoma , Proteômica
5.
Ecotoxicol Environ Saf ; 193: 110352, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32120163

RESUMO

Nowadays, the environmental risk caused by the widespread use of pesticides and their ubiquitous residuals has received more and more attention in academia and regulatory agencies. Due to the large number of pesticides used in agriculture and their adverse effects on all living organisms and the numerous end-points, it is necessary to employ the in silico tools to quickly highlight hazardous pesticides. In this study, we have evaluated the toxicity of pesticides against Sheepshead minnow with the Quantitative Structure-Activity Relationship (QSAR) approach. The models for the specific-type (insecticides, herbicides and fungicides) as well as the general-type (combing all the specific-type pesticides and some microbicides, nematicides, etc.) pesticides were developed using the Genetic Algorithm and the Multiple Linear Regression method, subsequently validated with various metrics. The validation results suggested that the obtained models were highly robust, externally predictive and characterized by a broad applicability domain. Considering the modeling descriptors, the toxicity of pesticides would increase with the lipophilicity and decrease with the polarity and hydrophilicity. Most electrotopological state descriptors contribute negatively to the toxicity, while the influence of topological structure descriptors mainly depends on the physiochemical information they encode. The models proposed in this paper would be useful in filling the data gaps, prioritizing and then focusing experiments on more hazardous pesticides.


Assuntos
Praguicidas/toxicidade , Algoritmos , Animais , Simulação por Computador , Cyprinidae , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Modelos Lineares , Modelos Biológicos , Praguicidas/química , Relação Quantitativa Estrutura-Atividade
6.
Environ Toxicol Chem ; 38(3): 638-649, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556163

RESUMO

The Deepwater Horizon oil spill resulted in the release of over 640 million L of crude oil into the Gulf of Mexico, affecting over 2000 km of shoreline, including estuaries that serve as important habitats and nurseries for aquatic species. Cyprinodon variegatus (sheepshead minnow) are small-bodied fish that inhabit northern Gulf of Mexico estuaries, are easily adaptable to laboratory conditions, and are commonly used in toxicological assessment studies. The purpose of the present study was to determine the somatic, reproductive, and developmental effects of an environmentally relevant polycyclic aromatic hydrocarbon (PAH) mixture, the oil high-energy water accommodated fraction (HEWAF), on experimentally exposed sheepshead minnow (F0 ) as well as 2 generations of offspring (F1 and F2 ) without additional exposure. The F0 generation exposed to HEWAF had increased liver somatic indices, altered egg production, and decreased fertilization. Several developmental endpoints in the F1 were altered by F0 HEWAF exposure. As adults, low HEWAF-exposed F1 females demonstrated decreased weight and length. Both the F1 and F2 generations derived from high HEWAF-exposed F0 had deficits in prey capture compared to control F1 and F2 , respectively. Correlations between endpoints and tissue PAHs provide evidence that the physiological effects observed were associated with hydrocarbon exposure. These data demonstrate that PAHs were capable of causing physiological changes in exposed adult sheepshead minnow and transgenerational effects in unexposed offspring, both of which could have population-level consequences. Environ Toxicol Chem 2019;38:638-649. © 2018 SETAC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Feminino , Peixes Listrados/anatomia & histologia , Peixes Listrados/crescimento & desenvolvimento , Peixes Listrados/fisiologia , Fígado/efeitos dos fármacos , Masculino , Petróleo/toxicidade , Poluição por Petróleo , Reprodução/efeitos dos fármacos
7.
Ecotoxicol Environ Saf ; 166: 186-191, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30269013

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) present in crude oil have been shown to cause the dysregulation of genes important in eye development and function, as well as morphological abnormalities of the eye. However, it is not currently understood how these changes in gene expression are manifested as deficits in visual function. Embryonic red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus) were exposed to water accommodated fractions (WAFs) of weathered crude oil and assessed for visual function using an optomotor response assay in early life-stage larvae, with subsequent samples taken for histological analysis of the eyes. Larvae of both species exposed to increasing concentrations of oil exhibited a reduced optomotor response. The mean diameters of retinal layers, which play an important role in visual function and image processing, were significantly reduced in oil-exposed sheepshead larvae, though not in red drum larvae. The present study provides evidence that weathered crude oil has a significant effect on visual function in early life-stage fishes.


Assuntos
Olho/efeitos dos fármacos , Peixes Listrados/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Olho/anatomia & histologia , Olho/crescimento & desenvolvimento , Peixes Listrados/anatomia & histologia , Peixes Listrados/embriologia , Peixes Listrados/fisiologia , Larva/anatomia & histologia , Larva/efeitos dos fármacos , Fenômenos Fisiológicos Oculares/efeitos dos fármacos , Perciformes/anatomia & histologia , Perciformes/embriologia , Perciformes/fisiologia
8.
Mar Pollut Bull ; 129(1): 231-240, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680542

RESUMO

The increasing global contamination of plastics in marine environments is raising public concerns about the potential hazards of microplastics to environmental and human health. Microplastics formed by the breakdown of larger plastics are typically irregular in shape. The objective of this study was to compare the effects of spherical or irregular shapes of microplastics on changes in organ distribution, swimming behaviors, gene expression, and enzyme activities in sheepshead minnow (Cyprinodon variegatus). Both types of microplastics accumulated in the digestive system, causing intestinal distention. However, when compared to spherical microplastics, irregular microplastics decreased swimming behavior (i.e., total distance travelled and maximum velocity) of sheepshead minnow. Both microplastics generated cellular reactive oxygen species (ROS), while ROS-related molecular changes (i.e., transcriptional and enzymatic characteristics) differed. This study provides toxicological insights into the impacts of environmentally relevant (fragmented) microplastics on fish and improves our understanding of the environmental effects of microplastics in the ecosystem.


Assuntos
Cyprinidae/metabolismo , Plásticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae/genética , Cyprinidae/fisiologia , Conteúdo Gastrointestinal/química , Expressão Gênica/efeitos dos fármacos , Modelos Teóricos , Plásticos/análise , Propriedades de Superfície , Natação , Poluentes Químicos da Água/análise
9.
Aquat Toxicol ; 194: 10-17, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29128660

RESUMO

Large-scale use of dispersants to remediate oil spills has raised concerns about their toxicity to marine organisms. Of particular concern is oxidative stress and resulting membrane damage due to exposure to surfactants in dispersant mixtures. We investigated the potential of the dispersant Corexit 9500® and one of its major components, the anionic surfactant dioctyl sodium sulfosuccinate (DOSS), to induce oxidative stress in larval sheepshead minnows after 24 and 96h exposures, at two sublethal concentrations, the lesser being environmentally realistic for each compound. Corexit exposures elicited only minimal antioxidant responses for most antioxidant components tested, with increased glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities observed only after 96h and at the higher exposure concentration. In contrast, DOSS induced statistically significant increases in the levels of reactive oxygen species (ROS), GPx, and lipid peroxidation, as well as depleted reduced glutathione (GSH) levels at both time points and concentrations. These data indicate that short-term and environmentally realistic exposures to DOSS can impact antioxidant response capabilities, raising concern about its use in oil dispersants and other high volume use products where environmental releases are likely.


Assuntos
Antioxidantes/metabolismo , Cyprinidae/metabolismo , Ácido Dioctil Sulfossuccínico/toxicidade , Lipídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tensoativos/toxicidade , Animais , Cyprinidae/crescimento & desenvolvimento , Ácido Dioctil Sulfossuccínico/análise , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espectrometria de Massas , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
10.
Aquat Toxicol ; 181: 1-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27810487

RESUMO

Thyroid hormones are critically involved in somatic growth, development and metamorphosis of vertebrates. The structural similarity between thyroid hormones and triclosan, an antimicrobial compound widely employed in consumer personal care products, suggests triclosan can have adverse effects on the thyroid system. The sheepshead minnow, Cyprinodon variegatus, is now used in ecotoxicological studies that have recently begun to focus on potential disruption of the thyroid axis by endocrine disrupting compounds. Here, we investigate the in vivo effects of exposure to triclosan (20, 50, and 100µgL-1) on the thyroid system and the embryonic and larval development of C. variegatus. Triclosan exposure did not affect hatching success, but delayed hatching time by 6-13h compared to control embryos. Triclosan exposure affected the ontogenetic variations of whole body thyroid hormone concentrations during the larval phase. The T3 peak around 12-15 dph, described to be indicative for the metamorphosis climax in C. variegatus, was absent in triclosan-exposed larvae. Triclosan exposure did not produce any deformity or allometric repatterning, but a delayed development of 18-32h was observed. We conclude that the triclosan-induced disruption of the thyroid system delays in vivo the start of metamorphosis in our experimental model. We observed a global developmental delay of 24-45h, equivalent to 4-7% prolongation of the developmental time in C. variegatus. The costs of delayed metamorphosis can lead to reduction of juvenile fitness and could be a determining factor in the outcome of competitive interactions.


Assuntos
Disruptores Endócrinos/toxicidade , Peixes Listrados/crescimento & desenvolvimento , Hormônios Tireóideos/metabolismo , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Peixes Listrados/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Poluentes Químicos da Água/química
11.
Ecol Appl ; 26(6): 1708-1720, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755711

RESUMO

Evaluating long-term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information readily available, making it difficult to determine the applicability of realistic models to quantify population-level risks. To evaluate the trade-offs between data demands and increased specificity of spatially explicit models for population-level risk assessments, we developed a model for a standard toxicity test species, the sheepshead minnow (Cyprinodon variegatus), exposed to oil contamination following the Deepwater Horizon oil spill and compared the output with various levels of model complexity to a standard risk quotient approach. The model uses habitat and fish occupancy data collected over five sampling periods throughout 2008-2010 in Pensacola and Choctawhatchee Bays, Florida, USA, to predict species distribution, field-collected and publically available data on oil distribution and concentration, and chronic toxicity data from laboratory assays applied to a matrix population model. The habitat suitability model established distribution of fish within Barataria Bay, Louisiana, USA, and the population model projected the dynamics of the species in the study area over a 5-yr period (October 2009-September 2014). Vital rates were modified according to estimated contaminant concentrations to simulate oil exposure effects. To evaluate the differences in levels of model complexity, simulations varied from temporally and spatially explicit, including seasonal variation and location-specific oiling, to simple interpretations of a risk quotient derived for the study area. The results of this study indicate that species distribution, as well as spatially and temporally variable contaminant concentrations, can provide a more ecologically relevant evaluation of species recovery from catastrophic environmental impacts but might not be cost-effective or efficient for rapid assessment needs.


Assuntos
Biodiversidade , Estuários , Peixes Listrados/fisiologia , Poluição por Petróleo , Animais , Baías , Florida , Golfo do México , Modelos Biológicos , Dinâmica Populacional
12.
Fish Physiol Biochem ; 42(2): 607-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26573854

RESUMO

The sheepshead minnow is widely used in ecotoxicological studies that only recently have begun to focus on disruption of the thyroid axis by xenobiotics and endocrine disrupting compounds. However, reference levels of the thyroid prohormone thyroxine (T4) and biologically active hormone 3,5,3'-triiodothyronine (T3) and their developmental patterns are unknown. This study set out to describe the ontogeny and morphology of the thyroid gland in sheepshead minnow, and to correlate these with whole-body concentrations of thyroid hormones during early development and metamorphosis. Eggs were collected by natural spawning in our laboratory. T4 and T3 were extracted from embryos, larvae and juveniles and an enzyme-linked immunoassay was used to measure whole-body hormone levels. Length and body mass, hatching success, gross morphology, thyroid hormone levels and histology were measured. The onset of metamorphosis at 12-day post-hatching coincided with surges in whole-body T4 and T3 concentrations. Thyroid follicles were first observed in pre-metamorphic larvae at hatching and were detected exclusively in the subpharyngeal region, surrounding the ventral aorta. Follicle size and thyrocyte epithelial cell heights varied during development, indicating fluctuations in thyroid hormone synthesis activity. The increase in the whole-body T3/T4 ratio was indicative of an increase in outer ring deiodination activity. This study establishes a baseline for thyroid hormones in sheepshead minnows, which will be useful for the understanding of thyroid hormone functions and in future studies of thyroid toxicants in this species.


Assuntos
Peixes Listrados/crescimento & desenvolvimento , Glândula Tireoide/crescimento & desenvolvimento , Hormônios Tireóideos/metabolismo , Animais , Peixes Listrados/metabolismo , Metamorfose Biológica , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
13.
Dig J Nanomater Biostruct ; 9(1): 369-377, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25411584

RESUMO

Nanotechnologies research has become a significant priority worldwide. Many engineered nano-sized materials have been increasingly used in consumer products. But the adverse effects of these nanoparticles on the environment and organisms have recently drawn much attention. The present study investigated the effects of different concentrations of copper oxide nanoparticles (CuO NPs) on the sheepshead minnow (Cyprinodon variegatus) at different salinity regimes, since it is able to withstand a wide range of salinities. The results indicated that CuO NPs could cause behavioral changes in the fish, such as increased mucus secretion, less general activity and loss of equilibrium. No mortality was observed at the presence of CuO NPs during the experiments. But higher oxidative stress was determined at half strength seawater than seawater exposure medium, which can be associated with the decreasing toxicity of CuO NPs as salinity increases. In addition, Cu contents in the tissues of the fish were significantly higher (p<0.05) in the low salinity. The order of Cu accumulation in the fish's organs was intestine > gills > liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA