Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Radiol Phys Technol ; 14(3): 215-225, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34195914

RESUMO

The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo simulation code that has been applied in various areas of medical physics. These include application in different types of radiotherapy, shielding calculations, application to radiation biology, and research and development of medical tools. In this article, the useful features of PHITS are explained by referring to actual examples of various medical applications.


Assuntos
Íons Pesados , Simulação por Computador , Transporte de Íons , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador
2.
Rev. cuba. inform. méd ; 12(1)ene.-jun. 2020. tab, graf
Artigo em Espanhol | CUMED, LILACS | ID: biblio-1126552

RESUMO

Uno de los requerimientos indispensables en el diseño de las instalaciones donde se trabaja con radiación ionizante es la determinación del espesor adecuado de las paredes, pisos, techo y puertas de los locales, que garanticen dosis por debajo de las restricciones establecidas por la autoridad regulatoria. El objetivo del presente trabajo es desarrollar una herramienta interactiva, libre y de código abierto para calcular los blindajes requeridos en una instalación de Medicina Nuclear. En el código, desarrollado en Phyton utilizando el entorno interactivo Jupiter Notebook, se incluyó el análisis tanto para Tomografía por Emisión de Fotón Único como para Tomografía por Emisión de Positrones. La herramienta fue implementada para el cálculo de los blindajes de un departamento de Medicina Nuclear del Centro Internacional de Restauración Neurológica (CIREN). Esta herramienta libre y de código abierto facilita los cálculos de blindaje aumentando la velocidad, lo que contribuye a lograr una optimización de la protección radiológica, pero también puede usarse como herramienta pedagógica(AU)


One of the indispensable requirements in the design of the facilities where ionizing radiation is used is the determination of the adequate thickness of the walls, floors, ceiling and doors of the premises, which guarantee doses below the restrictions established by the regulatory authority. The goal of this work is to develop an interactive, free and open source tool to calculate the shields required in a Nuclear Medicine installation. Analysis for both Single Photon Emission Tomography and Positron Emission Tomography was included in the code, developed in Phyton using the interactive Jupiter Notebook environment. The tool was implemented to calculate the shields of a Nuclear Medicine department of the International Center for Neurological Restoration (CIREN). This free and open source tool facilitates shielding calculations by increasing speed, which contributes to the optimization of radiation protection, but can also be used as a pedagogical tool(AU)


Assuntos
Humanos , Proteção Radiológica/métodos , Códigos de Obras/normas , Blindagem contra Radiação , Serviço Hospitalar de Medicina Nuclear/normas
3.
Radiol Phys Technol ; 10(2): 213-226, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28025782

RESUMO

The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.


Assuntos
Doses de Radiação , Proteção Radiológica , Espalhamento de Radiação , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA