Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Microbiol Spectr ; 12(7): e0009824, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38814093

RESUMO

Two patients with acute gastroenteritis tested positive for Shiga toxin-producing Escherichia coli (STEC) by polymerase chain reaction (PCR), and both strains carried the Shiga toxin 2 encoding gene. Since routine culture using CHROMagar STEC failed to recover these isolates, immunomagnetic separation (IMS) targeting the top six non-O157:H7 serotypes was used for isolate recovery. After two subsequent IMS runs, the STEC strains were isolated from trypticase soy broth with and without overnight enrichment for runs 1 and 2, respectively. Serotyping based on whole-genome sequencing revealed that both patients carried the strain O166:H15 STEC with the stx2 gene. Hence, the magnetic beads used in IMS appeared to have cross-reactivity with other E. coli serotypes. When the STEC isolates from both stools were cultured on CHROMagar STEC and sheep blood agar (BAP), two distinct colony sizes were apparent after overnight incubation. The small and large colonies were picked and separately cultured on both media, and colony growth was observed for 2 weeks at room temperature after an initial overnight incubation at 37°C. After 1 week, the colonies showed concentric ring structures with a darker center and a lighter surrounding on CHROMagar STEC and a "fried egg"-resembling structure with a raised circular center and a flat surrounding on BAP. Both colony types remained morphologically different on CHROMagar STEC throughout the 15 days. However, on BAP, their appearance was comparable by day 7. IMPORTANCE: Shiga toxin-producing E. coli (STEC) infections can lead to severe complications such as bloody diarrhea and hemolytic uremic syndrome (HUS), especially in young children and the elderly. Strains that carry the shiga toxin 2 gene (stx2), such as O157:H7, have been mostly linked with severe disease outcomes. In recent years, outbreaks caused by non-O157:H7 strains have increased. E. coli O166:H15 has been previously reported causing a gastroenteritis outbreak in 1996 as a non-STEC strain, however the O166:H15 serotype we recovered carried the stx2 gene. It was particularly challenging to isolate this strain from stools by culture. Consequently, we tested immunomagnetic separation for the STEC recovery, which was a novel approach on clinical stools. Virulence genes were included for the characterization of these isolates.


Assuntos
Infecções por Escherichia coli , Fezes , Gastroenterite , Toxina Shiga II , Escherichia coli Shiga Toxigênica , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/classificação , Fezes/microbiologia , Humanos , Toxina Shiga II/genética , Infecções por Escherichia coli/microbiologia , Gastroenterite/microbiologia , Separação Imunomagnética , Sorotipagem , Masculino , Sorogrupo , Feminino , Sequenciamento Completo do Genoma
2.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791466

RESUMO

The emerging heteropathotype shigatoxigenic (STEC) and extra-intestinal pathogenic Escherichia coli (ExPEC) O80:H2 has been the second leading cause of pediatric HUS in France since the mid-2010s. In contrast with other highly pathogenic STEC serotypes, for which ruminants have clearly been identified as the main human infection source, this heteropathotype's reservoir remains unknown. In this context, we describe for the first time the isolation of seven STEC O80:H2 strains from healthy cattle on a single cattle farm in France. This study aimed at (i) characterizing the genome and (ii) investigating the phylogenetic positions of these O80:H2 STEC strains. The virulomes, resistomes, and phylogenetic positions of the seven bovine isolates were investigated using in silico typing tools, antimicrobial susceptibility testing and cgMLST analysis after short-read whole genome sequencing (WGS). One representative isolate (A13P112V1) was also subjected to long-read sequencing. The seven isolates possessed ExPEC-related virulence genes on a pR444_A-like mosaic plasmid, previously described in strain RDEx444 and known to confer multi-drug resistance. All isolates were clonally related and clustered with human clinical strains from France and Switzerland with a range of locus differences of only one to five. In conclusion, our findings suggest that healthy cattle in France could potentially act as a reservoir of the STEC-ExPEC O80:H2 pathotype.


Assuntos
Infecções por Escherichia coli , Genoma Bacteriano , Filogenia , Escherichia coli Shiga Toxigênica , Sequenciamento Completo do Genoma , Animais , Bovinos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/classificação , França , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Sequenciamento Completo do Genoma/métodos , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Doenças dos Bovinos/microbiologia , Fatores de Virulência/genética , Virulência/genética , Sorogrupo , Genômica/métodos , Plasmídeos/genética
3.
Pediatr Nephrol ; 39(2): 603-607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37474629

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) hemolytic uremic syndrome (HUS) classically presents with diarrhea. Absence of diarrheal prodrome increases suspicion for atypical HUS (aHUS). Inability to obtain a fecal specimen for culture or culture-independent testing limits the ability to differentiate STEC-HUS and aHUS. CASE-DIAGNOSIS/TREATMENT: Our patient presented with abdominal pain and constipation, and evaluation of pallor led to a diagnosis of HUS. There was a complete absence of diarrhea during the disease course. Lack of fecal specimen for several days delayed testing for STEC. Treatment for atypical HUS was initiated with complement-blockade therapy. PCR-testing for Shiga toxin from fecal specimen later returned positive. Alternative complement-pathway testing did not identify a causative genetic variant or anti-Factor H antibody. A diagnosis of STEC-HUS was assigned, and complement-blockade therapy was stopped. CONCLUSION: Diagnosis of aHUS remains a diagnosis of exclusion, whereby other causes of HUS are eliminated with reasonable certainty. Exclusion of STEC is necessary and relies on testing availability and recognition of testing limitations. Diarrhea-negative STEC-HUS remains a minority of cases, and future research is needed to explore the clinical characteristics of these patients.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Síndrome Hemolítico-Urêmica Atípica/complicações , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Síndrome Hemolítico-Urêmica Atípica/terapia , Diarreia/diagnóstico , Diarreia/etiologia , Via Alternativa do Complemento , Constipação Intestinal/complicações , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/tratamento farmacológico
4.
Animals (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685059

RESUMO

Shiga toxin-producing E. coli (STEC) infections associated with wildlife are increasing globally, highlighting many 'spillover' species as important reservoirs for these zoonotic pathogens. A human outbreak of STEC serogroup O157 in 2015 in Scotland, associated with the consumption of venison meat products, highlighted several knowledge gaps, including the prevalence of STEC O157 in Scottish wild deer and the potential risk to humans from wild deer isolates. In this study, we undertook a nationwide survey of wild deer in Scotland and determined that the prevalence of STEC O157 in wild deer is low 0.28% (95% confidence interval = 0.06-0.80). Despite the low prevalence of STEC O157 in Scottish wild deer, identified isolates were present in deer faeces at high levels (>104 colony forming units/g faeces) and had high human pathogenic potential based on whole genome sequencing and virulence gene profiling. A retrospective epidemiological investigation also identified one wild deer isolate from this study as a possible source of a Scottish human outbreak in 2017. These results emphasise the importance of food hygiene practices during the processing of wild deer carcasses for human consumption.

5.
Virol J ; 20(1): 174, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550759

RESUMO

BACKGROUND: The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS: Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS: We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION: The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.


Assuntos
Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Sorogrupo , Infecções por Escherichia coli/microbiologia , Antígenos O/genética , Antígenos O/metabolismo , Transferência Genética Horizontal , Filogenia , Escherichia coli Shiga Toxigênica/genética , Fezes/microbiologia
6.
Front Microbiol ; 14: 1156375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426006

RESUMO

The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 µL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.

7.
APMIS ; 131(7): 333-338, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186317

RESUMO

Shiga toxin (stx)-producing Escherichia coli (STEC) causes potentially severe gastrointestinal infections. Due to its public health importance, control measures are required, and carriers may need to refrain from work or daycare when the risk of spread to vulnerable people is high. We evaluated the use of direct stool multiplex PCR compared to culture for primary STEC diagnostics and for follow-up in order to update the national guidelines for STEC monitoring. We analyzed primary and follow-up samples of 236 STEC PCR-positive cases at HUSLAB, Helsinki, Finland in 2016-2017, altogether 858 samples. All STEC PCR-positive samples were inoculated on non-selective chromogenic agar plates. Culture positivity was confirmed from culture sweeps by PCR. 211 (89%) of the cases were culture positive in their primary sample. Of all primary and follow-up samples, 499 were PCR positive and of these 450 (90%) were culture positive. PCR-negative follow-up samples were available from 125 cases. Of these, 88 cases were followed for at least three consecutive PCR-negative samples. Two cases (2%) had culture-positive sample(s) after two consecutive PCR-negative samples. The median time for STEC clearance was 22-23 days. The laboratory-developed multiplex PCR test used in this study is a reliable method for STEC diagnostics and follow-up in a clinical laboratory. When non-selective methodology is used, the majority of PCR-positive samples (90%) are also culture positive. Furthermore, only two cases (2%) in our material had two consecutive PCR-negative samples followed by positive samples. Consequently, to demonstrate the clearance from STEC infection, we consider two PCR-negative follow-up samples sufficient. The Finnish national guidelines for STEC monitoring have been updated accordingly.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Reação em Cadeia da Polimerase Multiplex , Seguimentos , Infecções por Escherichia coli/diagnóstico , Técnicas Bacteriológicas/métodos , Fezes , Proteínas de Escherichia coli/genética
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769094

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes gastroenteritis and Hemolytic Uremic Syndrome. Cattle are the main animal reservoir, excreting the bacteria in their feces and contaminating the environment. In addition, meat can be contaminated by releasing the intestinal content during slaughtering. Here, we evaluated the safety and immunogenicity of a vaccine candidate against STEC that was formulated with two chimeric proteins (Chi1 and Chi2), which contain epitopes of the OmpT, Cah and Hes proteins. Thirty pregnant cows in their third trimester of gestation were included and distributed into six groups (n = 5 per group): four groups were administered intramuscularly with three doses of the formulation containing 40 µg or 100 µg of each protein plus the Quil-A or Montanide™ Gel adjuvants, while two control groups were administered with placebos. No local or systemic adverse effects were observed during the study, and hematological parameters and values of blood biochemical indicators were similar among all groups. Furthermore, all vaccine formulations triggered systemic anti-Chi1/Chi2 IgG antibody levels that were significantly higher than the control groups. However, specific IgA levels were generally low and without significant differences among groups. Notably, anti-Chi1/Chi2 IgG antibody levels in the serum of newborn calves fed with colostrum from their immunized dams were significantly higher compared to newborn calves fed with colostrum from control cows, suggesting a passive immunization through colostrum. These results demonstrate that this vaccine is safe and immunogenic when applied to pregnant cows during the third trimester of gestation.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Vacinas de Subunidades Antigênicas , Animais , Bovinos , Feminino , Gravidez , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunização Passiva , Imunoglobulina G , Vacinas de Subunidades Antigênicas/efeitos adversos
9.
Front Cell Infect Microbiol ; 12: 926127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159652

RESUMO

Free-living amoebae (FLA) are widely distributed protozoa in nature, known to cause severe eye infections and central nervous system disorders. There is growing attention to the potential role that these protozoa could act as reservoirs of pathogenic bacteria and, consequently, to the possibility that, the persistence and spread of the latter may be facilitated, by exploiting internalization into amoebae. Shiga toxin-producing strains of Escherichia coli (STEC) are zoonotic agents capable of causing serious diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Cattle represent the main natural reservoir of STEC, which are frequently found also in other domestic and wild ruminants, often without causing any evident symptoms of disease. The aspects related to the ecology of STEC strains in animal reservoirs and the environment are poorly known, including the persistence of these microorganisms within niches unfavorable to survival, such as soils or waters. In this study we investigated the interaction between STEC strains of serotype O157: H7 with different virulence gene profiles, and a genus of a wild free-living amoeba, Acanthamoeba sp. Our results confirm the ability of STEC strains to survive up to 20 days within a wild Acanthamoeba sp., in a quiescent state persisting in a non-cultivable form, until they reactivate following some stimulus of an unknown nature. Furthermore, our findings show that during their internalization, the E. coli O157 kept the set of the main virulence genes intact, preserving their pathogenetic potential. These observations suggest that the internalization in free-living amoebae may represent a means for STEC to resist in environments with non-permissive growth conditions. Moreover, by staying within the protozoa, STEC could escape their detection in the vehicles of infections and resist to the treatments used for the disinfection of the livestock environment.


Assuntos
Acanthamoeba , Amoeba , Infecções por Escherichia coli , Escherichia coli O157 , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Ruminantes , Toxina Shiga , Solo , Fatores de Virulência/genética
10.
Appl Environ Microbiol ; 88(16): e0076022, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35913153

RESUMO

Lactose utilization is one of the general biochemical characteristics of Escherichia coli, and the lac operon is responsible for this phenotype, which can be detected on lactose-containing media, such as MacConkey agar, after 24 h of incubation. However, some Shiga toxin-producing E. coli (STEC) O121:H19 strains exhibit an unusual phenotype called delayed lactose utilization (DLU), in which lactose utilization can be detected after 48 h of cultivation but not after only 24 h of cultivation. Insertion of an insertion sequence (IS), IS600, into the lacZ gene appears to be responsible for the DLU phenotype, and exposure to lactose has been reported to be necessary to observe this phenotype, but the mechanism underlying these phenomena remains to be elucidated. Here, we performed detailed analyses of the lactose utilization abilities of a set of O121:H19 strains and their mutants and found that IS-excision enhancer (IEE)-mediated excision of IS600 reactivates the lacZ gene and that the selective proliferation of IS-cured subclones in lactose-supplemented culture medium is responsible for the expression of the DLU phenotype. In addition, we analyzed the patterns of IS insertion into the lacZ and iee genes in the global O121:H19 population and revealed that while there are O121:H19 strains or lineage/sublineages that contain the IS insertion into iee or intact lacZ and thus do not show the DLU phenotype, most currently circulating O121:H19 strains contain IS600-inserted lacZ and intact iee and thus exhibit this phenotype. IMPORTANCE Insertion sequences (ISs) can modulate gene expression by gene inactivation or activation. While phenotypic changes due to IS insertion/transposition are frequently observed, gene reactivation by precise or simple IS excision rarely occurs. In this study, we show that IS600 is excised from the lacZ gene by IS-excision enhancer (IEE) during the cultivation of Shiga toxin-producing Escherichia coli (STEC) O121:H19 strains that show an unusual phenotype called delayed lactose utilization (DLU). This excision rescued their lactose utilization defect, and the subsequent selective proliferation of IS-cured subclones in lactose-containing medium resulted in the expression of the DLU phenotype. As we also show that most currently circulating O121:H19 strains exhibit this phenotype, this study not only provides information helpful for the isolation and identification of O121:H19 STEC but also offers novel insights into the roles of IS and IEE in the generation of phenotypic variation in bacterial populations.


Assuntos
Proteínas de Escherichia coli , Lactose , Escherichia coli Shiga Toxigênica , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Óperon Lac , Lactose/metabolismo , Fenótipo , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/genética
11.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630311

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal "hot spots". Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.

12.
Microb Genom ; 8(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748417

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are a cause of severe human illness and are frequently associated with haemolytic uraemic syndrome (HUS) in children. It remains difficult to identify virulence factors for STEC that absolutely predict the potential to cause human disease. In addition to the Shiga-toxin (stx genes), many additional factors have been reported, such as intimin (eae gene), which is clearly an aggravating factor for developing HUS. Current STEC detection methods classically rely on real-time PCR (qPCR) to detect the presence of the key virulence markers (stx and eae). Although qPCR gives an insight into the presence of these virulence markers, it is not appropriate for confirming their presence in the same strain. Therefore, isolation steps are necessary to confirm STEC viability and characterize STEC genomes. While STEC isolation is laborious and time-consuming, metagenomics has the potential to accelerate the STEC characterization process in an isolation-free manner. Recently, short-read sequencing metagenomics have been applied for this purpose, but assembly quality and contiguity suffer from the high proportion of mobile genetic elements occurring in STEC strains. To circumvent this problem, we used long-read sequencing metagenomics for identifying eae-positive STEC strains using raw cow's milk as a causative matrix for STEC food-borne outbreaks. By comparing enrichment conditions, optimizing library preparation for MinION sequencing and generating an easy-to-use STEC characterization pipeline, the direct identification of an eae-positive STEC strain was successful after enrichment of artificially contaminated raw cow's milk samples at a contamination level as low as 5 c.f.u. ml-1. Our newly developed method combines optimized enrichment conditions of STEC in raw milk in combination with a complete STEC analysis pipeline from long-read sequencing metagenomics data. This study shows the potential of the innovative methodology for characterizing STEC strains from complex matrices. Further developments will nonetheless be necessary for this method to be applied in STEC surveillance.


Assuntos
Leite , Escherichia coli Shiga Toxigênica , Animais , Microbiologia de Alimentos , Leite/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação
13.
Microorganisms ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34946112

RESUMO

Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica are important foodborne pathogens capable of forming both single- and multi-species biofilms. In this study, the mono- and dual-species biofilms were formed by STEC O113:H21 and Salmonella enterica serovar Choleraesuis 10708 on stainless steel in the presence of beef juice over 5 d at 22 °C. The dual-species biofilm mass was substantially (p < 0.05) greater than that produced by STEC O113:H21 or S. Choleraesuis 10708 alone. However, numbers (CFU/mL) of S. Choleraesuis 10708 or STEC O113:H21 cells in the dual-species biofilm were (p < 0.05) lower than their respective counts in single-species biofilms. In multi-species biofilms, the sensitivity of S. Choleraesuis 10708 to the antimicrobial peptide WK2 was reduced, but it was increased for STEC O113:H21. Visualization of the temporal and spatial development of dual-species biofilms using florescent protein labeling confirmed that WK2 reduced cell numbers within biofilms. Collectively, our results highlight the potential risk of cross-contamination by multi-species biofilms to food safety and suggest that WK2 may be developed as a novel antimicrobial or sanitizer for the control of biofilms on stainless steel.

14.
Antibiotics (Basel) ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34827361

RESUMO

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.

15.
J Vet Med Sci ; 83(12): 1860-1868, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34629335

RESUMO

The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.


Assuntos
Doenças dos Bovinos , Cervos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Doenças dos Suínos , Animais , Animais Selvagens , Bovinos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Japão/epidemiologia , Proteínas de Membrana Transportadoras , Análise de Sequência/veterinária , Escherichia coli Shiga Toxigênica/genética , Suínos , Doenças dos Suínos/epidemiologia
16.
Microorganisms ; 9(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34361964

RESUMO

Shiga toxin-producing Escherichia coli (STEC) cause illnesses ranging from mild diarrhea to ischemic colitis and hemolytic uremic syndrome (HUS); serogroup O157 is the most common cause. We describe the epidemiology and transmission routes for U.S. STEC outbreaks during 2010-2017. Health departments reported 466 STEC outbreaks affecting 4769 persons; 459 outbreaks had a serogroup identified (330 O157, 124 non-O157, 5 both). Among these, 361 (77%) had a known transmission route: 200 foodborne (44% of O157 outbreaks, 41% of non-O157 outbreaks), 87 person-to-person (16%, 24%), 49 animal contact (11%, 9%), 20 water (4%, 5%), and 5 environmental contamination (2%, 0%). The most common food category implicated was vegetable row crops. The distribution of O157 and non-O157 outbreaks varied by age, sex, and severity. A significantly higher percentage of STEC O157 than non-O157 outbreaks were transmitted by beef (p = 0.02). STEC O157 outbreaks also had significantly higher rates of hospitalization and HUS (p < 0.001).

17.
Toxins (Basel) ; 13(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208170

RESUMO

Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure, and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence. Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of inducing cell death and as proinflammatory factors that sensitize the host target organs to damage, less is known about the interface between the commensalism of bacterial communities and the pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs associated with severe illness may have compounding effects on the diversity of the indigenous bacteria and bacterial communities in the gut. The present review focuses on studies describing the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the resident microbiome, and host tissues. The determination of these interactions may provide insights into the unresolved issues regarding these pathogens.


Assuntos
Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Toxinas Shiga/toxicidade , Escherichia coli Shiga Toxigênica , Animais , Humanos , Probióticos
18.
Front Cell Infect Microbiol ; 11: 614963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268129

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Toxina Shiga , Toxinas Shiga
19.
Data Brief ; 36: 107065, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34307800

RESUMO

Shiga toxin-producing Escherichia coli (STEC) strain RM13514 is a clinical isolate linked to the 2010 romaine lettuce-associated outbreak in the U.S. The genes encoding a type II restriction and modification system, PstI R-M, are located in a prophage genome that is also encoding Shiga toxin. In-frame deletion of the PstI R-M genes or dam, encoding a DNA adenine methylase, in strain RM13514 were generated, resulting in two mutant strains MQC599 and MQC602, respectively. The mutant strain MQC599 exhibited a similar growth rate as the wild-type (WT) strain RM13514 when grown in Luria-Bertani (LB) broth at 37 °C. In contrast, the growth of mutant strain MQC602 was significantly slower than either RM13514 or MQC599. Genes transcriptionally regulated by the PstI R-M system or by Dam were examined by the RNA-Seq based comparative transcriptomics. The total RNA was extracted from cells of each strain grown in LB broth at exponential and stationary phases. Three biological replicates were collected for each strain. After removal of ribosomal RNA, the mRNAs were converted to cDNAs followed by Illumina sequence library construction. For strains RM13514 and MQC599, six libraires were generated for each, three from the cells in the exponential growth phase and three from the cells in the stationary phase. For strain MQC602, three additional libraries were constructed from the cells in the early exponential growth phase. The resulting 21 libraries were combined in equal amounts and sequenced on an Illumina HighSeq 2000 instrument with the Paired End 100 bp (PE100) read format, generating a total of 45.83 Gbp sequence reads. This set of sequence data is available in the NCBI SRA database under the BioProject accession number PRJNA684587. This set of transcriptomic data provides information on methylation-mediated epigenetic regulation in STEC, an important foodborne pathogen that is frequently associated with large epidemic outbreaks and can cause life-threatening disease in humans [1]. This set of data will be useful for researchers who are interested in physiology and pathogenicity of foodborne pathogens or in the fundamental mechanisms of epigenetic regulation in bacteria.

20.
Arch Toxicol ; 95(3): 975-983, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33483759

RESUMO

The subtilase cytotoxin (SubAB) is secreted by certain Shiga toxin-producing Escherichia coli (STEC) strains and is composed of the enzymatically active subunit SubA and the pentameric binding/transport subunit SubB. We previously demonstrated that SubA (10 µg/ml), in the absence of SubB, binds and intoxicates the human cervix cancer-derived epithelial cell line HeLa. However, the cellular and molecular mechanisms underlying the cytotoxic activity of SubA in the absence of SubB remained unclear. In the present study, the cytotoxic effects mediated by SubA alone were investigated in more detail in HeLa cells and the human colon cancer cell line HCT116. We found that in the absence of SubB, SubA (10 µg/ml) is internalized into the endoplasmic reticulum (ER), where it cleaves the chaperone GRP78, an already known substrate for SubA after its canonical uptake into cells via SubB. The autonomous cellular uptake of SubA and subsequent cleavage of GRP78 in cells is prevented by treatment of cells with 10 µM brefeldin A, which inhibits the transport of protein toxins into the ER. In addition, by analyzing the SubA mutant SubAΔC344, we identified the C-terminal SEEL motif as an ER-targeting signal. Conclusively, our results strongly suggest that SubA alone shares the same intracellular transport route and cytotoxic activity as the SubAB holotoxin.


Assuntos
Proteínas de Escherichia coli/metabolismo , Glicosídeos/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/metabolismo , Triterpenos/metabolismo , Transporte Biológico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Escherichia coli/farmacologia , Feminino , Glicosídeos/farmacologia , Células HCT116 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Subtilisinas/farmacologia , Triterpenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA