RESUMO
The accurate and efficient quantification of nanodrug dosage is crucial for early anticancer therapy. The enzyme-linked immunosorbent assay (ELISA) has emerged as a robust tool for detecting anticancer nanodrug dosage; however, the development of sensing elements to quantify anticancer nanodrugs still poses a challenge. To overcome this problem, we utilize polysuccinimide-loaded curcumin (CUR @PSIOAm) as a model to employ an ELISA based on peroxidase nanozyme Pt-SiO2 Janus nanoparticles (Pt-SiO2 JNPs) for the indirect quantitative analysis of intracellular anticancer nanodrug dosage. This novel approach employs an immunoassay to indirectly quantify the dosage of anticancer nanodrugs while preserving its structural integrity. The silica components of Pt-SiO2 JNPs adsorb intermediates, while the Pt NP components exhibit high catalytic activity. Pt-SiO2 JNPs are functionalized with anti-PSIOAm antibody (Pt-SiO2 JNPs-Ab) to serve as an immunosensor capable of specific recognition of CUR @PSIOAm. Additionally, we employed cytotoxicity assays and confocal imaging techniques to demonstrate the excellent biocompatibility of CUR @PSIOAm, as well as its specific uptake by cancer cells. According to the experimental results, the limit of detection (LOD) for the immunoassay of Pt-SiO2 JNPs as a marker for detecting CUR @PSIOAm is approximately 4.5-fold lower than that of horseradish peroxidase. Therefore, by optimizing the conditions, we established a direct competitive ELISA using Pt-SiO2 JNPs as colorimetric indicators for the quantitative detection of intracellular CUR @PSIOAm. The LOD for this ELISA was determined to be 0.01 ng/mL, while the loaded CUR amount calculated from the drug loading capacity was found to be 0.22 pg/mL. Furthermore, the recoveries obtained from this established ELISA ranged between 94.0 and 108%, demonstrating excellent accuracy. Consequently, the peroxidase mimic Pt-SiO2 JNPs-based ELISA exhibits significant potential for precise quantification of intracellular anticancer nanodrug dosages.
RESUMO
Silica nanoparticles (SiO2 NPs) have numerous applications in agriculture, but may also pose significant risks to plants. Nevertheless, their bioaccumulation, an important determinant of their risks, was often not accurately measured due to the lack of reliable methods. In this study, the accumulation in rice seedlings of SiO2 NPs of different sizes without and with a gold nanoparticle core (Au@SiO2 NPs) was examined. Potential interference from SiO2 NP dissolution was minimized by lowering the pH of the uptake medium, which did not result in any observable adverse bioeffects. Under this condition, the direct determination of Si showed the significant accumulation of SiO2 NPs in roots and shoots and a decrease in the accumulation of SiO2 NPs in shoots with increasing particle size. However, when accumulation was monitored using Au@SiO2 NPs, SiO2 NP accumulation was significantly higher when measured by direct Si determination than by Au determination, indicating that the former overestimates the accumulation of SiO2 NPs. Consequently, unlike direct Si determination, tracking the gold nanoparticle core revealed an increase in SiO2 NP accumulation in shoots with increasing particle size. Overall, accurate determination of SiO2 NP bioaccumulation is imperative for appropriate bioapplications and reliable biosafety assessments of these particles.
RESUMO
This paper, for the first time, presents a potential application of titanium(IV) oxide and silicon(IV) oxide combined with lignin through a solvent-free mechanical process as admixtures for cement composites. The designed TiO2-SiO2 (1:1 wt./wt.) hybrid materials mixed with lignin were extensively characterized using Fourier transform infrared spectroscopy (FTIR), electrokinetic potential analysis, thermal analysis (TGA/DTG), and porous structure properties. In addition, particle size distributions and scanning electron microscopy (SEM) were conducted to evaluate morphological and microstructural properties. In the next step, the effect of the TiO2-SiO2/lignin hybrid admixture on the workability, hydration process, microstructure, porosity, mechanical, and antimicrobial properties of the cement composites was evaluated. It was observed that appropriately designed hybrid systems based on lignin contributed to better workability, with an improvement of 25 mm, and reduced porosity of cement composites, decreasing from 14.4 % to 13.3 % in the most favorable sample. Additionally, a higher microstructure density was observed, and with increasing amounts of hybrid material admixture, the mechanical parameters also improved. In addition, the TiO2-SiO2/lignin hybrid systems had significant potential due to their high microbial purity, suggesting their effectiveness in minimizing microbial accumulation on surfaces. The final stage of analysis involved employing response surface methodology (RSM) to ascertain the optimum composition of cement composites. The results obtained indicate that the TiO2-SiO2/lignin admixtures are a promising approach for the valorization of lignin waste flows in the design of cement composites.
RESUMO
In this study, the feasibility of using bamboo bark fibers as modifiers to enhance asphalt mortar performance was investigated. Bamboo bark fibers were modified with NaOH, KH570 silane coupling agent, and nano-SiO2, and their preparation methods were established. The modified fibers were assessed for their oil absorption, thermal stability, and hydrophobicity. The asphalt mortar was evaluated for three key indicators: rutting resistance, deformation resistance, and durability at high temperatures. The microscopic morphology and modification mechanisms of the fibers were also studied. The results showed that modification with NaOH increased fiber porosity and surface roughness, while KH570 and its hydrolysis products enabled nano-SiO2 grafting onto the fibers, improving their adsorption to asphalt. The NaOH-KH570-nano-SiO2 ternary-composite-modified bamboo bark fiber (NKSBF) demonstrated superior hydrophobicity, oil absorption, and thermal stability at the asphalt mixing temperature. Among the modified fibers, asphalt mortar containing 3% NKSBF showed the best performance based on three key indicators, increased the shear strength by 96.4% and the softening point by 7.1% compared to the base asphalt, and increased the ductility by 1% compared to lignin fiber asphalt mortar. The incorporation of 3% bamboo bark fibers improved the rutting resistance, deformation resistance, and durability of short-term-aged asphalt mortar, with NKSBF showing the most significant improvement.
RESUMO
Asphaltene deposition in porous media creates many challenges in porous media. This study synthesizes ZnO/SiO2/xanthan nanocomposites (NCs) to adsorb asphaltene and reduce its effect on the shale and carbonate rocks. NCs structure is analyzed using SEM, EDX, BET, and FTIR tests. Also, the rocks' surface is analyzed by an atomic force microscopy (AFM) test after 48 and 96 h of contact with 20 ppm NCs and 20 mg asphaltene. Core flooding tests are performed on shale rocks using 20 ppm NCs at 5500, 4000, and 2500 psi at 48 h. Using AFM in calcite and dolomite formations and selecting core flooding tests based on that are new scenarios that followed in this paper. FTIR results confirm asphaltene adsorption on NCs's surface by changing 854 and 962 cm-1 peaks. AFM tests confirmed asphaltene adsorption on NCs surface, too. Average roughness, root mean square roughness, peak to valley roughness, and average size of the shale were higher than the carbonate sheets. At 20 ppm NCs in shale reservoirs, permeability reduction in porous media was increased up to 39.5 %, and asphaltene precipitation decreased from 8.95 and 20.06 wt% to 2.25 and 10.25 wt%, which shows our suggested scenarios were efficient.
RESUMO
Breast cancer is a cause of death in women, making it a significant issue in women's health. The aim of this study was to evaluate the effects of nanoparticles (NPs) of Fe3O4NPs@pectin and Fe3O4NPs@SiO2 on MCF-7 cells. Fe3O4NPs@pectin and Fe3O4NPs@SiO2 NPs were prepared using the chemical coprecipitation technique. The characteristics of the NPs were determined using physical methods. The cytotoxic effects of the NPs were assessed by the MTT assay. The expression levels of BAX, BCL2, and TPX1 genes were determined using real-time PCR. The results indicated a density ratio of 0.11, a saturation magnetism value of 68.5 emu/g, and a spherical with sizes of 98 nm for the NPs. The MTT assay showed that 500 µg/mL of NPs had 75 % toxicity on MCF-7 cells after five days. The increased expression of BAX with 250 µg/mL of Fe3O4@pectin showed a significant relationship (p-value = 0.0030). Down-regulated expression of BCL2 showed a significant relationship between the three groups treated with 250 µg/mL and 500 µg/mL of Fe3O4@SiO2 and 250 µg/mL of Fe3O4@pectin (p-values of 0.0014, 0.0009 and 0.0030, respectively). Additionally, decreased TPX indicated a significant relationship between treatment at 125, 250 and 500 µg/mL of Fe3O4@SiO2 (p-values of 0.0388, 0.0063 and 0.0496, respectively).
RESUMO
Magnetically separable Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@ZnO, and Fe3O4@SiO2@ZnO-Ag composites are synthesized using hydrothermal and wet chemistry methods. The samples obtained are characterized in terms of morphology, composition, optical, and magnetic properties using TEM, SEM-EDS, XRD, FTIR, VSM, XPS, and UV-vis, and the photodegradation of Acid Blue 161 dye under UV irradiation is investigated. As a result of SEM and TEM analyses, the diameters of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@ZnO, and Fe3O4@SiO2@ZnO-Ag composites are determined as 210, 220, 230 and 235 nm, respectively. The magnetic properties of the samples are determined by VSM analysis. In VSM analyses, magnetization saturation values of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@ZnO, and Fe3O4@SiO2@ZnO-Ag composites are determined as 81, 64, 41 and 20 emus × g-1, respectively. In XRD analysis, the face-centered cubic structure of Fe3O4 particles and the hexagonal wurtzite structure of ZnO are determined and it is determined that they are compatible with standard diffraction cards. According to UV-Vis analysis, E g values for Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@ZnO, and Fe3O4@SiO2@ZnO-Ag composites are found as 1.3, 1.68, 2.21, and 2.15 eV, respectively. Among the photocatalysts prepared, Fe3O4@SiO2@ZnO-Ag composite Acid Blue 161 shows superior removal and recyclability against photodegradation of the dyestuff.
RESUMO
In recent years, there has been a notable shift towards the use of structural colors in textile dyeing, replacing traditional chemical dyes. This change is primarily attributed to the increasing popularity of structural colors due to their eco-friendly characteristics. In thus study, SiO2 particles underwent modification with PDA and Ti3C2Tx (MXene) to establish a core-shell structure, resulting in MSiO2/PDA@MXene photonic crystals characterized by electrostatic assembly and hydrogen bonding. These crystals comprise a SiO2 core encased in black PDA@MXene shells. The PDA@MXene shell works by absorbing scattered light indiscriminately, thereby intensifying the vividness of the structural colors. Adjusting the size of the MSiO2/PDA@MXene microspheres enables the generation of diverse structural colors. Then, chitosan-coated cotton fabrics were decorated using photonic crystals of MSiO2/PDA@MXene. Coating cotton fabric with chitosan introduced positively charged groups onto its surface, which enabled electrostatic interaction with photonic crystals. The prepared fabrics also showed excellent antioxidant property, further enhancing their appeal for outdoor applications. These structural colors offer a sustainable substitute for conventional textile dyes, meeting the increasing need for environmentally conscious practices within the textile sector.
RESUMO
To enable SiC material to achieve high electromagnetic wave (EMW) absorption performance, solving its impedance mismatch with EMW is necessary. Therefore, a novel approach is proposed for the precise control of impedance matching by adjusting the shell thickness of SiO2 nanolayers on the surface of SiC nanofibers (NFs). High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) reveals the atomic scale oxidation process of SiC, providing fresh insights into the oxidation mechanism. By oxidizing to construct a heterogeneous core-shell structure nanofiber (NF) can effectively lock the incident EMW inside the NF through the generated charges gathered at the interface, forming an electronic barrier that prevents the outward propagation of EMWs. The produced SiC@SiO2 NFs-3 exhibits exceptional EMW absorption properties, including an impressive minimum reflection loss (RLmin) of -53.09 dB and a broad maximum effective absorption bandwidth (EABmax) of 8.85 GHz. These findings not only deepen understanding of the oxidation mechanism of SiC but also offer valuable insights for further enhancing the EMW absorption capabilities of SiC materials, paving the way for their application in advanced EMW technologies.
RESUMO
Neutron-activated 31Si is an almost pure beta emitter and is one of the short-lived radionuclides, including beta-gamma emitter 56Mn, which were created in a form of residual radioactivity in the early period after the atomic bombing of Hiroshima and Nagasaki. The features of the biological effects of internal irradiation by these radionuclides are a subject of scientific discussions and research. The publication presents data on internal radiation doses in experimental Wistar rats that were exposed to sprayed neutron-activated microparticles of 31SiO2. Doses of internal radiation could be conditionally divided into three groups according to their values. It has been found that elevated values of internal radiation doses in rats' organs/tissues as a result of exposure to sprayed 31SiO2 microparticles with initial activity of 3.2 × 107 Bq varied from 10 to 120 mGy (eyes, lungs, skin, stomach, jejunum, large intestine). The moderate dose values were in the range from 1.9 to 3.7 mGy (trachea, esophagus, ileum). The smallest doses were received by the kidney, testis, blood, cerebellum, heart, liver, cerebrum, bladder, spleen and thymus (from 0.11 to 0.94 mGy). The obtained data are important for interpreting the results of ongoing and planned biological experiments with 31SiO2 microparticles-in comparison with the previously published data on features of biological effects caused by beta-gamma emitting 56MnO2 neutron-activated microparticles.
RESUMO
The core-shell structured Ag@SiO2 nanomaterial integrated with surface-enhanced Raman scattering (SERS) spectroscopy promises a critical application in anti-counterfeiting. Security labels have been fabricated based on Ag@SiO2 embedded with Raman reporters. The Ag@SiO2 nanomaterial shows good stability and excellent anti-interference property for anti-counterfeiting. Multiple kinds of Raman probe molecules have been anchored in the Ag@SiO2 labels to provide specific and abundant encoding information. The flexible encoding security information could be controlled conveniently by adjusting probe molecules, which not only enrich the SERS information but also improve the level of anti-counterfeiting. Furthermore, the Ag@SiO2 shown excellent stability in organic solvent, and successfully used in ink for the anti-counterfeiting application.
RESUMO
Salt stress significantly reduces rice yield and quality and is a global challenge, especially in arid and semi-arid regions with limited freshwater resources. The present study was therefore conducted to examine the potential of silica nanoparticles (SiO2 NPs) in mitigating the adverse effects of saline irrigation water in salt-tolerant rice. Two salt-tolerant rice varieties, i.e., Y liangyou 957 (YLY957) and Jingliangyou 534 (JLY534), were irrigated with 0.6% salt solution to simulate high-salt stress and two SiO2 NPs were applied, i.e., control (CK) and SiO2 NPs (15 kg hm-2). The results demonstrated that the application of SiO2 NPs increased, by 33.3% and 23.3%, the yield of YLY957 and JLY534, respectively, compared with CK, which was primarily attributed to an increase in the number of grains per panicle and the grain-filling rate. Furthermore, the application of SiO2 NPs resulted in a notable enhancement in the chlorophyll content, leaf area index, and dry matter accumulation, accompanied by a pronounced stimulation of root system growth and development. Additionally, the SiO2 NPs also improved the antioxidant enzyme activities, i.e., superoxide dismutase, peroxidase, and catalase activity and reduced the malondialdehyde content. The SiO2 NPs treatment effectively improved the processing quality, appearance quality, and taste quality of the rice. Furthermore, the SiO2 NPs resulted in improvements to the rapid viscosity analyzer (RVA) pasting profile, including an increase in peak viscosity and breakdown values and a reduction in setback viscosity. The application of SiO2 NPs also resulted in a reduction in crystallinity and pasting temperature owing to a reduction in the proportion of B2 + B3 amylopectin chains. Overall, the application of silica nanoparticles improved the quality of rice yield under high-salt stress.
RESUMO
This study focuses on the calcined coal gangue (CCG)-blended cements containing Stöber nano-SiO2 (SNS) particles. The effects of SNS particles on the workability, hydration behaviour, mechanical properties and microstructure evolution of the blended cements were comprehensively investigated at curing ages ranging from 1 to 28 d. The hydration behaviour was studied via isothermal calorimetry test, X-ray diffraction (XRD) and thermogravimetric (TG) tests. The microstructural evolution was studied using mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). The results show that the incorporation of SNS led to a significant reduction in fluidity, particularly at an SNS content of 3%. The SNS significantly increased the compressive strength of the CCG-blended cement at all curing ages, and the optimum SNS content was found to be 2%. SNS significantly accelerated not only the early cement hydration but also the pozzolanic reaction of CCG at later curing ages, resulting in a decrease in portlandite, as evidenced by the isothermal calorimetry, XRD and TG analysis. Microstructural analysis shows that the incorporation of SNS effectively refined the pore structure of the CCG-blended cement, resulting in the formation of a dense microstructure. All these beneficial effects of SNS provides advantages in the development of the compressive strength of the CCG-blended cement at all curing ages.
RESUMO
Ceramic slurry is the raw material used in stereolithography, and its performance determines the printing quality. Rheological behavior, one of the most important physical factors in stereolithography, is critical in ceramic printing, significantly affecting the flow, spreading, and printing processes. The rheological behavior of SiO2 slurry used in stereolithography technology is investigated in the current research using different powder diameters and temperatures. The results present the apparent non-Newtonian behavior. The yielding characteristics occur in all cases. For single-powder cases, the viscosity decreases when the powder diameter is increased. When the nano-sized and micro-sized powders are mixed in different proportions, a more significant proportion of micron-sized powders will decrease the viscosity. With an increase in the nano-sized powders, the slurry exhibits the shear thinning behavior; otherwise, the shear thickening behavior is observed. Thus, the prediction model is built based on the use of the pelican optimization algorithm-deep extreme learning machine (POA-DELM), and the model in then compared with the fitted and traditional models to validate the effectiveness of the method. A more accurate viscosity prediction model will contribute to better fluid dynamic simulation in future work.
RESUMO
Constructing photonic crystals with core-shell structured nanoparticles is an important means for applications such as secure communication, anti-counterfeiting marking, and structural color camouflage. Nonetheless, the precise synthesis technology for core-shell structured nanoparticles at the hundred-nanometer scale faces significant challenges. This paper proposes a controlled synthesis method for core-shell structured nanoparticles using a template method. By using 100 nm diameter silica nanospheres as templates and coating them with a ferroferric oxide shell layer, SiO2@Fe3O4 core-shell structured nanoparticles with regular morphology and good uniformity can be obtained. The study experimentally investigated the effects of feed amount, modifiers, temperature, and feed order on the coating effect, systematically optimizing the preparation process. Centrifugal driving technology was used to achieve structural colors in the visible wavelength range. Additionally, the method successfully created well-defined and uniform core-shell structured nanoparticles using 200 nm diameter silica nanospheres as templates, demonstrating that this controllable synthesis method can effectively produce core-shell structured nanoparticles over a wide range of particle sizes. The template method proposed in this paper can significantly improve morphological regularity and size uniformity while effectively reducing the preparation cost of core-shell structured nanoparticles.
RESUMO
The partial replacement effect of Portland cement by geothermal nano-SiO2 waste (GNSW) for sustainable Portland-cement-based concrete was investigated to improve the properties of concrete exposed at high critical temperatures. Portland cement was partially replaced by 20 and 30 wt.% of GNSW. The partial replacement effect on Portland-cement-based concrete subjected to 350, 550, and 750 °C was evaluated by measuring the weight changes, ultrasonic pulse velocity, thermogravimetric and differential thermal analysis, X-ray diffraction, surface inspection, and scanning electron microscopy under residual conditions. The ultrasonic pulse velocity results showed that the GNSW specimens maintained suitable stability after being heated to 350 °C. The SEM analysis revealed a denser microstructure for the 20 wt.% of partial replacement of Portland cement by GNSW specimen compared to the reference concrete when exposed to temperatures up to 400 °C, maintaining stability in its microstructure. The weight losses were higher for the specimens with partial replacements of GNSW than the reference concrete at 550 °C, which can be attributed to the pozzolanic activity presented by the GNSW, which increases the amounts of CSH gel, leading to a much denser cementitious matrix, causing a higher weight loss compared to the reference concrete. GNSW is a viable supplementary cementitious material, enhancing thermal properties up to 400 °C due to its high pozzolanic activity and filler effect while offering environmental benefits by reducing industrial waste.
RESUMO
The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and lapilli, which were later altered to form deposits of zeolites and bentonites. This work has focused on an area located on the northern flank of the San José-Los Escullos zeolite deposit, the only one of its kind with industrial capacity in Spain. The main objective of this research is to characterize the zeolite (SZ) of this new area from the mineral, chemical, and technical points of view and establish its possible use as a natural pozzolan. In the first stage, a study of the mineralogical and chemical composition of the selected samples was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and thermogravimetric analysis (TGA); in the second stage, chemical-qualitative and pozzolanicity technical tests were carried out at 8 and 15 days. In addition, a chemical analysis was performed using XRF on the specimens of mortars made with a standardized mixture of Portland cement (PC: 75%) and natural zeolite (SZ: 25%) at the ages of 7, 28, and 90 days. The results of the mineralogical analyses indicated that the samples are made up mainly of mordenite and subordinately by smectite, plagioclase, quartz, halloysite, illite, and muscovite. Qualitative chemical assays indicated a high percentage of reactive silica and reactive CaO and also negligible contents of insoluble residues. The results of the pozzolanicity test indicate that all the samples analyzed behave like natural pozzolans of good quality, increasing their pozzolanic reactivity from 8 to 15 days of testing. Chemical analyses of PC/SZ composite mortar specimens showed how a significant part of SiO2 and Al2O3 are released by zeolite while it absorbs a large part of the SO3 contained in the cement. The results presented in this research could be of great practical and scientific importance as they indicate the continuation of zeolitic mineralization beyond the limits of the San José-Los Escullos deposit, which would result in an increase in geological reserves and the extension of the useful life of the deposit, which is of vital importance to the local mining industry.
RESUMO
Zn-air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized by the solvent casting method and soaked in 6 M KOH to act as GPEs. The thickness of the membrane was modified (50, 100, and 150 µm), and after determining the best thickness, the membrane was modified with synthesized SiO2 nanospheres and multi-walled carbon nanotubes (CNTs). SEM micrographs revealed that the CNTs displayed lengths of tens of micrometers, having a narrow diameter (95 ± 7 nm). In addition, SEM revealed that the SiO2 nanospheres had homogeneous shapes with sizes of 110 ± 10 nm. Physicochemical experiments revealed that SiO2 incorporation at 5 wt.% increased the water uptake of the PVA/PAA membrane from 465% to 525% and the ionic conductivity to 170 mS cm-1. The further addition of 0.5 wt.% CNTs did not impact the water uptake but it promoted a porous structure, increasing the power density and the stability, showing three-times-higher rechargeability than the ZAB operated with the PVA/PAA GPE.
RESUMO
Polyolefin separators with worse porous structures and compatibilities mismatch the internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study, a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize pore sizes and in situ-built SSD coatings on porous skeletons. Imported SSD uniformizes pore sizes owing to centralized interface distributions within casting films. Meanwhile, abundant cavitations enable the in situ SSD coating to facilely fix onto porous skeleton surfaces during separator fabrications, which feature simple techniques, low cost, environmental friendliness, and the capability for continuous fabrications. A sturdy SSD coating on the porous skeleton confines thermal shrinkages and offers a superior safety guarantee for LIBs. The abundant sulfonic acid groups of SSD endow PP@SSD with excellent electrolyte affinity, which lowers Li+ transfer barriers and optimizes interfacial compatibility. Therefore, assembled LIBs give the optimal C-rate capacity and cycling stability, holding a capacity retention of 82.7% after the 400th cycle at 0.5 C.
RESUMO
A Li-ion battery combines a cathode benefitting from Sn and MnO2 with high sulfur content, and a lithiated anode including fumed silica, few layer graphene (FLG) and amorphous carbon. This battery is considered a scalable version of the system based on lithium-sulfur (Li-S) conversion, since it exploits at the anode the Li-ion electrochemistry instead of Li-metal stripping/deposition. Sn and MnO2 are used as cathode additives to improve the electrochemical process, increase sulfur utilization, while mitigating the polysulfides loss typical of Li-S devices. The cathode demonstrates in half-cell a maximum capacity of ~1170â mAh gS -1, rate performance extended over 1â C, and retention of 250 cycles. The anode undergoes Li-(de)alloying with silicon, Li-(de)insertion into amorphous carbon, and Li-(de)intercalation through FLG, with capacity of 500â mAh g-1 in half-cell, completely retained over 400 cycles. The full-cells are assembled by combining a sulfur cathode with active material loading up to 3â mg cm-2 and lithiated version of the anode, achieved either using an electrochemical pathway or a chemical one. The cells deliver at C/5 initial capacity higher than 1000â mAh gS -1, retained for over ~40 % upon 400 cycles. The battery is considered a promising energy storage system for possible scaling-up in pouch or cylindrical cells.