Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789922

RESUMO

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Assuntos
Antioxidantes , Peixes , Resveratrol , Animais , Resveratrol/farmacologia , Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Peixes/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nutrientes/metabolismo , Ração Animal/análise , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Dieta/veterinária , Perfilação da Expressão Gênica
2.
Fish Physiol Biochem ; 50(3): 941-954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381278

RESUMO

Gastrin is an important intragastrointestinal hormone, but reports on its regulation of feeding behavior in fish are still scarce. This study aimed to determine the feeding regulatory function of gastrin in sturgeon. In this study, a gastrin/cholecystokinin-like peptide was identified in the genomes of sturgeon and proved to be gastrin by evolutionary tree analysis. Tissue distribution of gastrin and its receptor, cholecystokinin receptor B (CCKRB), showed that both had high mRNA abundance in the hypothalamus and gastrointestinal tract. In the duodenum, gastrin and CCKRB mRNAs were reduced at 1 h of fasting, and both were also observed in the stomach and hypothalamus in response to changes in feeding status. Sulfated gastrin 17 is the major form of gastrin in vivo. Therefore, we investigated the effect of sulfated gastrin 17 on feeding by intraperitoneal injection into Siberian sturgeon using sulfated gastrin 17. The results showed that gastrin 17 significantly reduced the cumulative feeding of Siberian sturgeon in the short term (1, 3 and 6 h) and long term (1, 2, 3, 4, 5 and 7 days). Finally, we explored the potential mechanism of feeding inhibition after intraperitoneal injection of gastrin 17 for 7 consecutive days. The results showed that gastrin 17 treatment significantly increased the mRNA levels of anorexigenic peptides (cart, cck and pyy), while it had no significant effect on the mRNA abundance of orexigenic peptides (npy and agrp). In addition, gastrin 17 treatment significantly affected the expression of appetite signaling pathways in the hypothalamus, such that the mRNA expression of ampkα1 was significantly reduced, whereas the mRNA abundance of stat3, mtor and s6k was significantly increased. In conclusion, the present study confirmed the anorectic effect of gastrin on Siberian sturgeon.


Assuntos
Peixes , Gastrinas , Receptor de Colecistocinina B , Animais , Gastrinas/metabolismo , Peixes/fisiologia , Peixes/metabolismo , Receptor de Colecistocinina B/metabolismo , Receptor de Colecistocinina B/genética , Comportamento Alimentar/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Hipotálamo/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38191049

RESUMO

Emerging findings point to a role for C1q/TNF-related protein 4 (CTRP4) in feeding in mammals. However, it remains unknown whether CTRP4 regulates feeding in fish. This study aimed to determine the feeding regulation function of CTRP4 in Siberian sturgeon (Acipenser baerii). In this study, the Siberian sturgeon ctrp4 (Abctrp4) gene was cloned, and Abctrp4 mRNA was shown to be highly expressed in the hypothalamus. In the hypothalamus, Abctrp4 mRNA decreased during fasting and reversed after refeeding. Subsequently, we obtained the AbCTRP4 recombinant protein by prokaryotic expression and optimized the expression and purification conditions. Siberian sturgeon (81.28 ± 14.75 g) were injected intraperitoneally using 30, 100, and 300 ng/g Body weight (BW) AbCTRP4 to investigate its effect on feeding. The results showed that 30, 100, and 300 ng/g BW of the AbCTRP4 significantly reduced the cumulative food intake of Siberian sturgeon at 1, 3, and 6 h. Finally, to investigate the potential mechanism of CTRP4 feeding inhibition, 300 ng/g BW AbCTRP4 was injected intraperitoneally. The findings demonstrated that AbCTRP4 treatment for 1 h significantly promoted the mRNA levels of anorexigenic peptides (pomc, cart, and leptin) while suppressing the mRNA abundances of orexigenic peptides (npy and agrp).In addition, the jak2/stat3 pathway in the hypothalamus was significantly activated after 1 h of AbCTRP4 treatment. In conclusion., this study confirms the anorexigenic effect of CTRP4 in Siberian sturgeon.


Assuntos
Apetite , Complemento C1q , Animais , Apetite/genética , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Ingestão de Alimentos/fisiologia , Peixes/fisiologia , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
4.
Mol Reprod Dev ; 91(1): e23729, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282315

RESUMO

This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17ß. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.


Assuntos
Peixes , Ovário , Animais , Masculino , Feminino , Peixes/genética , Peixes/metabolismo , Gônadas , Diferenciação Sexual/genética , Androgênios/metabolismo , Estrogênios/metabolismo
5.
Vet Res Commun ; 48(2): 797-810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923869

RESUMO

An 8-week feeding trial was carried out to examine the effect of different sources of dietary Zn on some physiological responses (performance, digestive enzymes activity, hemato-biochemical parameters, antioxidant status and liver histology) of Siberian sturgeon, Acipenser baerii. For this purpose, fish with an average weight of 100 g ± 5 were randomly allocated into four groups including control, inorganic zinc (Zn-sulfate), organic zinc (Zn-gluconate), and zinc-oxide nanoparticles (ZnO-NPs) at 50 mg Zn kg- 1 feed. Improved growth indices, namely weight gain (WG) and specific growth rate (SGR) and feed conversion ratio (FCR) were observed in fish fed Zn-gluconate supplemented diet (P < 0.0.5). The highest digestive enzymes activity was recorded in fish fed Zn-gluconate supplementation (P < 0.0.5). Hematological indices significantly increased in fish fed diet containing ZnO-NPs (P < 0.0.5). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of fish fed ZnO-NPs contained diet were the highest (P < 0.0.5). The highest serum superoxide dismutase (SOD) and catalase (CAT) enzymes activity were observed in fish fed ZnO-NPs and inorganic/organic Zn contained diets, respectively. While liver tissue SOD and glutathione peroxidase (GPx) enzymes activity Zn were significantly increased in fish fed inorganic/organic Zn supplemented diet (P < 0.0.5). Based on liver histological results, a severe tissue changes such as necrosis and pyknosis were observed in fish fed with Zn-sulfate in comparison to other forms. In conclusion, the data of the present study confirmed that organic Zn (mainly) and nano-Zn (to some extent) could be more efficient Zn sources in Siberian sturgeon.


Assuntos
Óxido de Zinco , Zinco , Animais , Zinco/farmacologia , Antioxidantes , Óxido de Zinco/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Peixes/fisiologia , Superóxido Dismutase , Fígado , Sulfatos , Gluconatos , Ração Animal/análise
6.
Fish Shellfish Immunol ; 145: 109321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122952

RESUMO

Siberian sturgeon (Acipenser baerii) fry often face environmental stressors that can compromise their immune system, rendering them susceptible to opportunistic pathogens in intensive aquaculture systems. In this study, we explored the innovative use of chitosan nanoparticles loaded with Mentha piperita essential oil (MPO/CNPs) as a dietary supplement to improve the growth and immune responses of A. baerii. The results demonstrated that the addition of MPO/CNPs to the diet led to significant improvements in growth, as evidenced by increased red blood cell count, hematocrit, haemoglobin concentration, and reduced triglyceride levels. Furthermore, significant differences were observed in the immune parameters for the treatment groups receiving Mentha piperita essential oil loaded in chitosan nanoparticles (MPO/CNPs), including enhanced lysozyme activity, immunoglobulin M (IgM) levels, respiratory burst activity, and ACH50 activity. Additionally, gene expression analysis revealed upregulation of key immune-related genes in the MPO/CNPs-treated groups. These findings suggest that the use of MPO/CNPs can enhance the growth and bolster the immune defences of Siberian sturgeon fry, contributing to more sustainable production in intensive aquaculture environments.


Assuntos
Quitosana , Óleos Voláteis , Animais , Imunidade Humoral , Mentha piperita , Dieta , Peixes
7.
Animals (Basel) ; 13(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37684961

RESUMO

Aeromonas salmonicida is one of the major threats to world aquaculture, causing fish furunculosis and high mortality rates in cultured fish, particularly salmonids. Although Aeromonas spp. is a thoroughly studied pathogen, little is known regarding aeromoniasis in sturgeons. After a mortality outbreak, four juvenile sturgeons (Acipenser baerii) were submitted for autopsy and tissue samples were collected for histopathological and microbiological studies. The external examination revealed size heterogenicity, skin hyperpigmentation and reduced body condition of sturgeons. Within the abdominal cavity, mild hepatomegaly and splenomegaly were observed, as well as generalized organic congestion. Histology revealed severe multifocal haemorrhagic and ulcerative dermatitis, mainly localized in the dorsal and latero-ventral areas of fish. The histological study also showed moderate to severe inflammation of gills and organic lesions compatible with septicaemia. Bacterial isolates were identified as Aeromonas salmonicida subsp. salmonicida using MALDI-TOF MS and PCR. Overall, the lesions first described here are consistent with those previously reported in other cultured fish species and contribute to a better understanding of the pathogenesis of Aeromonas salmonicida subsp. salmonicida in the Siberian sturgeon, aside from providing new diagnostic tools for bacterial diseases impacting the fast-growing industry of caviar.

8.
Animals (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627390

RESUMO

Squalene is an antioxidant that plays an essential role in fat metabolism. The study aimed to assess the effect of squalene supplied in feed on the growth performance, health status, and fatty acid profiles of muscle and liver of Siberian sturgeon, rainbow trout, and Eurasian perch. The experimental feeds containing 0%, 0.5%, and 1.0% squalene were prepared for each fish species. Hematological and biochemical indices, liver histology, and fatty acid profiling of muscle and liver were analyzed. Squalene supplementation was safe for fish, and no negative influence on growth status was observed. However, changes in the values of hematological and biochemical indicators were found, including the level of triglycerides in the blood of rainbow trout, and cholesterol in the blood of Eurasian perch. The addition of squalene influences the nucleocytoplasmic index values in all fish offered feed containing 1% squalene. The retention of squalene in the liver and muscle of experimental Siberian sturgeon was observed in both 0.5% and 1.0% squalene levels of feed. The PUFA and docosahexaenoic acid increase was observed in all fish in groups with squalene addition. Dietary squalene increases the content of PUFAs in tissues of the examined species.

9.
J Fish Dis ; 46(8): 887-894, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210748

RESUMO

Flavobacterium psychrophilum affects many cultured fish species and is considered one of the most important bacterial pathogens causing substantial economic losses in salmonid aquaculture worldwide. Here, F. psychrophilum was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nested PCR as the aetiological agent causing mortality in diseased juvenile Siberian sturgeons (Acipenser baerii) reared on a freshwater fish farm. Diseased sturgeons were lethargic and displayed dark skin pigmentation, increased mucus production and the presence of skin ulcerations and haemorrhages specially on the ventral side and the base of fins. The histological examination of fish revealed proliferative branchitis, ulcerative and necrotizing dermatitis and myositis, lymphoid tissue atrophy, liver and kidney degeneration and thrombosis. To the best of our knowledge, this is the first report describing the infection of Siberian sturgeons by F. psychrophilum. The detection of F. psychrophilum in diseased Siberian sturgeons and the description of the pathological findings observed during the outbreak may contribute to a better understanding of the bacterium pathogenicity and the range of fish species susceptible to infection.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Salmonidae , Animais , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Flavobacterium , Oncorhynchus mykiss/microbiologia
10.
Br J Nutr ; 129(5): 904-918, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35658963

RESUMO

Neuromedin U (NMU) has a critical function on the regulation of food intake in mammals, while the information is little in teleost. To investigate the function of NMU on appetite regulation of Siberian sturgeon (Acipenser baerii), this study first cloned nmu cDNA sequence that encoded 154 amino acids including NMU-25 peptide. Besides, the results showed that nmu mRNA was widely distributed in various tissues especially in the hypothalamus and telencephalon. The results of nutritional status (pre-feeding and post-feeding, fasting and re-feeding) experiments showed that nmu mRNA expression was significantly decreased at 1 and 3 h after feeding in different brain regions. Similarly, after feeding, the expression of nmu significantly decreased in peripheral tissues. Moreover, nmu expression in the hypothalamus was significantly increased after fasting 1 d, but decreased after fasting 17 d, which was significantly reversed after re-feeding. However, other brain regions like telencephalon and peripheral tissues like oesophagus, intestinum valvula and liver have different change patterns. Further study showed that acute i.c.v. and i.p. injection of NMU and chronic i.p. injection of NMU significantly reduced the food intake in a dose-dependent mode. In addition, the expressions of several critical appetite factors (nmu, aplein, cart, cck, ghrelin, npy, nucb2, pyy and ucn3) were significantly affected by acute NMU-25 administration in the hypothalamus, intestinum valvula and liver. These results indicate that NMU-25 has the anorexigenic function on food intake by affecting different appetite factors in Siberian sturgeon, which provides a foundation for further exploring the appetite regulation networks in fish.


Assuntos
Apetite , Ingestão de Alimentos , Animais , Apetite/fisiologia , Ingestão de Alimentos/genética , Peixes/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233280

RESUMO

The lack of detailed information on nutritional requirement results in limited feeding in Siberian sturgeon. In this study, resveratrol, a versatile natural extract, was supplemented in the daily diet, and the digestive ability and microbiome were evaluated in the duodena and valvular intestines of Siberian sturgeon. The results showed that resveratrol increased the activity of pepsin, α-amylase, and lipase, which was positively associated with an increase in the digestive ability, but it did not influence the final body weight. Resveratrol improved the digestive ability probably by distinctly enhancing intestinal villus height. Microbiome analysis revealed that resveratrol changed the abundance and composition of the microbial community in the intestine, principally in the duodenum. Random forests analysis found that resveratrol significantly downregulated the abundance of potential pathogens (Citrobacter freundii, Vibrio rumoiensis, and Brucella melitensis), suggesting that resveratrol may also improve intestinal health. In summary, our study revealed that resveratrol improved digestive ability and intestinal health, which can contribute to the development of functional feed in Siberian sturgeon.


Assuntos
Ração Animal , Pepsina A , Ração Animal/análise , Animais , Dieta , Peixes , Intestinos/química , Lipase , Resveratrol/farmacologia , alfa-Amilases
12.
Heliyon ; 8(6): e09667, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35785232

RESUMO

The role of growth hormone (GH) in chondrosteans is poorly understood, particularly with regard to its effects on growth. In this study, we examined the influence of exogenous GH on growth performance and body composition in juvenile Siberian sturgeon (Acipenser baerii). Fish with initial weight of 80.2 ± 0.1 g (mean ± S.E) were injected once every 10 days with either purified ovine GH (oGH) at 1, 2, 4, and 8 µg oGH/g body weight (BW) or with saline over a 50-day period. Treatment with the highest dose of oGH significantly enhanced growth performance (final body weight and length, body weight increase and specific growth rate, SGR). Notably, 8 µg oGH/g BW increased body weight by 33% and SGRw by 141% compared to control fish. GH-stimulated (8 µg oGH/g BW) growth was accompanied by increased crude protein content; however, oGH treatment did not affect levels of total protein, total lipid, cholesterol, triglyceride, or glucose in plasma. oGH decreased plasma levels of thyroxine (at 4 µg oGH/g BW), but had no significant effect on plasma levels of triiodothyronine or cortisol compared to controls. These findings indicate that 8 µg oGH/g BW enhances somatic growth and synthesis of body protein in juvenile Siberian sturgeon and demonstrate the feasibility of exogenous oGH treatment in conservation and aquaculture programs for this ancient species.

13.
Mar Drugs ; 20(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35621976

RESUMO

For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides-especially GEYGFE, PSVSLT, and IELFPGLP-which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.


Assuntos
Antioxidantes , Citoproteção , Animais , Cartilagem , Colágeno , Peixes , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos/química , Peptídeos/farmacologia
14.
Horm Behav ; 143: 105199, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597053

RESUMO

Previous data suggested that activation of endocannabinoid receptor 1 (CB1) was necessary for the orexigenic effect of Ghrelin in rodents, but the information is limited in teleosts. To investigate the feeding regulation pathway of Ghrelin and CB1 in Siberian sturgeon (Acipenser baerii), this study first identified the Ghrelin (345 bp, complete coding sequence) and Ghrelin receptor (GHSR, 500 bp, partial coding sequence) sequences, and then detected their tissue distribution patterns, which showed that Ghrelin is mainly distribution in peripheral tissues, while GSHR is mainly in different brain divisions. Besides, the qPCR before and after feeding showed that the mRNA expressions of Ghrelin and GHSR were inhibited after feeding in telencephalon, diencephalon and mesencephalon. Subsequently, the food intake and appetite factor expressions were measured by i.c.v. co-injection of Ghrelin and GSHR antagonist. The results showed that Ghrelin promoted the food intake of Siberian sturgeon, which was reversed by its receptor antagonist. Besides, i.c.v. injection of Ghrelin decreased telencephalon CART expression while increased NPY expression in the three brain regions. In addition, to further explore the relationship of Ghrelin and CB1 signal regulating feeding, the co-injection of Ghrelin and CB1 antagonists was performed. The results showed that AM6545 (CB1 peripheral restricted antagonist) failed to affect the orexigenic effect of Ghrelin and the expression pattern of NPY mRNA in the telencephalon. While in the diencephalon, the increase of food intake and NPY mRNA expression induced by Ghrelin was completely reversed by Rimonabant (CB1 global antagonist). These results indicate Ghrelin-GSHR pathway promotes the food intake of Siberian sturgeon by inducing the expression of NPY in the diencephalon, and the stimulating effect will be reversed by cannabinoid receptor antagonism. This study provides a foundation for understanding the pathways Ghrelin and CB1 signals in appetite regulation of the teleost.


Assuntos
Grelina , Receptores de Grelina , Animais , Ingestão de Alimentos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Peixes/fisiologia , Grelina/metabolismo , Grelina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Grelina/metabolismo
15.
Front Microbiol ; 13: 860079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558118

RESUMO

Heat stress induced by global warming has damaged the well-being of aquatic animals. The skin tissue plays a crucial role as a defense barrier to protect organism, however, little is known about the effect of heat stress on fish skin, particularly in cold-water fish species. Here, we investigated the effects of mild heat stress (24°C, MS) and high heat stress (28°C, HS) on Siberian sturgeon skin using RNA-seq, histological observation, and microbial diversity analysis. In RNA-seq, 8,819 differentially expressed genes (DEGs) in MS vs. C group and 12,814 DEGs in HS vs. C group were acquired, of which the MS vs. C and HS vs. C groups shared 3,903 DEGs, but only 1,652 DEGs were successfully annotated. The shared DEGs were significantly enriched in pathways associating with mucins synthesis. Histological observation showed that the heat stresses significantly reduced the number of skin mucous cells and induced the damages of epidermis. The microbial diversity analysis elicited that heat stress markedly disrupted the diversity and abundance of skin microbiota by increasing of potential pathogens (Vibrionimonas, Mesorhizobium, and Phyllobacterium) and decreasing of probiotics (Bradyrhizobium and Methylovirgula). In conclusion, this study reveals that heat stress causes adverse effects on sturgeon skin, reflecting in decreasing the mucus secretion and disordering the mucosal microbiota, which may contribute to develop the preventive strategy for heat stress caused by global warming.

16.
Fish Physiol Biochem ; 48(2): 419-436, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35184249

RESUMO

In 1996, kiss was reported to regulate feeding in mammals, but studies are limited in fish. Our study aimed to explore the possible role of kiss in the regulation of feeding in Siberian sturgeon (Acipenser baerii). kiss1 and kiss2 were cloned, and the expression patterns were analyzed in Siberian sturgeon. The complete coding regions of kiss1 and kiss2 genes were 393 and 471 bp. Both kiss1 and kiss2 showed the highest expression level in the hypothalamus. During the periprandial and fasting experiments, the expression of kiss1 and kiss2 highly significantly increased in the hypothalamus after feeding (P < 0.01). Compared with the feeding group, in hypothalamus, kiss1 expression in the fasting group highly significantly decreased (P < 0.01). In contrast, kiss2 expression had no significant difference on days 1 and 7 (P > 0.05) but highly significantly increased on day 14 (P < 0.01). Subsequently, the feeding function was verified by intraperitoneal (i.p.) injection of Kp1(10) and Kp1(10) into fish. The results showed that i.p. injection of 1 µg/g BW Kp1(10) or 0.01 µg/g BW Kp2(10) could significantly reduce 0-1 h food intake (P < 0.05) and affected the expression levels of apelin, ghrelin, leptin, nmu, etc. in the hypothalamus. These results suggested that kiss1 plays an anorexic role in both short- and long-term feeding regulation, while kiss2 plays a short-term anorexic and long-term orexigenic role. This study described kiss as a novel regulator of appetite in fish and laid the groundwork for further studies focused on physiological function. HIGHLIGHTS: • The kiss1 and kiss2 of Siberian sturgeon were cloned. • The expression levels of kiss1 and kiss2 mRNA were the highest in the hypothalamus. • Postprandial hypothalamic kiss1 and kiss2 expression levels increased in the periprandial experiment. • In the fasting test, the expression of hypothalamic kiss1 decreased after fasting, while the expression of kiss2 increased after fasting on the 14th day. • Siberian sturgeon food intake was reduced, and appetite factors expression levels in the hypothalamus were altered after intraperitoneal injection of Kp1(10) and Kp2(10).


Assuntos
Peixes , Kisspeptinas , Animais , Apetite/fisiologia , Clonagem Molecular , Peixes/fisiologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , RNA Mensageiro/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-34534676

RESUMO

Amylin is a 37-amino acid polypeptide that has been found to be involved in feeding regulation in some mammals, birds, and goldfish. We cloned amylin of Siberian sturgeon and detected its distribution pattern in 15 tissues. The expression levels in the periprandial period (pre-and post-feeding), the changes in the food intake, and the expression levels of related appetite factors after the intraperitoneal injection of amylin were detected. The expression of amylin was found to be the highest in the hypothalamus. Compared with 1 h pre-feeding, the expression levels of amylin in the hypothalamus and duodenum were increased significantly 1 h post-feeding. Compared with the control group (saline), intraperitoneal injection of 50 ng/g, 100 ng/g, and 200 ng/g of amylin significantly inhibited food intake at 1 h post injection, but not at 3 h and 6 h. The injection of 50 ng/g, 100 ng/g, and 200 ng/g amylin significantly inhibited the cumulative feed. After 1 h of 50 ng/g amylin injection, the levels of MC4R and somatostatin in the hypothalamus increased significantly, while the levels of amylin and NPY decreased significantly. The levels of CCK in the valvular intestine were increased significantly. Insulin in the duodenum was also increased significantly, but there was no significant change in ghrelin in the duodenum. These results show that amylin inhibits feeding in Siberian sturgeon by down-regulating the appetite-stimulating factor NPY and up-regulating the appetite-suppressing factors somatostatin, MC4R, CCK, and insulin. This study provides a theoretical basis for studying the feeding function and action mechanisms of amylin in Siberian sturgeon.


Assuntos
Proteínas de Peixes/metabolismo , Peixes/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/metabolismo , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/genética , Regulação do Apetite/fisiologia , Sequência de Bases , Clonagem Molecular , Duodeno/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Proteínas de Peixes/administração & dosagem , Proteínas de Peixes/genética , Peixes/genética , Peixes/fisiologia , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraperitoneais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/administração & dosagem , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Filogenia , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
18.
Animals (Basel) ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668867

RESUMO

This study provides data on the environmental sustainability, economic profitability, and gastrointestinal tract development of Siberian sturgeon diets containing black soldier fly full-fat larvae meal (BSFL) for a fish meal (FM) and fish oil (FO) replacement. BSFL was used at 5%, 10%, 15%, 20%, 25%, and 30% of the diet, replacing by up to 61.3% of FM and 95.4% of FO. BSFL positively affected the feed efficiency ratio, and lowered FM and FO usage per kg of fish gain. All the BSFL diets showed a sustainable fish-in fish-out (FIFO) ratio, which was lowered by up to 75% in comparison to the control. Economic assessment per kg of fish gain showed that the most lucrative variants were variants with 10% and 15% BSFL, it finds a mode of action in improvements of the gastrointestinal tract development, including increased pyloric caeca and proximal intestine shares and enhanced villus height and area. Thus, in Siberian sturgeon, BSFL may be used not only as an FM and FO replacer but also as a functional material due to its feed utilization and beneficial health effects, which are reflected in its high sustainability and favourable economics.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33540188

RESUMO

This study was done to evaluate the effects of Bisphenol A (BPA) on Siberian sturgeon (Acipenser baerii). As liver is the main organ in the homeostatic adjustments to stress, we used a proteomics method to address molecular response in this tissue. Also, we compared the levels of vitellogenin in plasma and mucus to propose that the last one be a non-invasive method to analyze this biomarker. The fish received 1, 10, and 100 µg g-1 week-1 BPA intraperitoneally for two weeks. The samples were taken on days 0, 7, and 14. Plasma vitellogenin level increased as the highest value was recorded in the group with 100 µg g-1 week-1 of BPA. Changes in the mucus and blood vitellogenin showed a similar pattern, suggesting that mucus could be used for evaluating the changes in blood vitellogenin. Comparative proteomics was used to determine the proteome of the liver of A. baerii in the highest dose of BPA in comparison with the control. Sixteen proteins were identified that their expression changed at least twice between the studied groups. The proteomic results showed that BPA increased the expression of proteins involved in the detoxification and metabolism, activated glycolysis, and produced necrosis in the liver.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Fenóis/efeitos adversos , Vitelogeninas/metabolismo , Animais , Proteínas de Peixes/análise , Proteínas de Peixes/sangue , Peixes/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteoma/análise , Proteoma/metabolismo , Vitelogeninas/análise , Vitelogeninas/sangue
20.
Fish Shellfish Immunol Rep ; 2: 100042, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420510

RESUMO

NLRs are important intracellular pattern recognition receptors and play an essential role in innate immunity for vertebrates. However, research on sturgeon NLRs is still scarce. In this study, the NLRC3-like gene from Siberian sturgeon (Acipenser baerii) (AbNLRC3-like) was cloned and characterized. The AbNLRC3-like full-length cDNA was composed of 3310 bp with a 166 bp of 5'-UTR, 2838 bp open reading frame (ORF) and 306 bp 3'-UTR, encoding 945 amino acids. Structural analysis of AbNLRC3-like showed the typical NLRs structure, including a central NACHT domain and a C-terminal 12 LRR motifs. Quantitative real-time PCR (qRT-PCR) analysis revealed that AbNLRC3-like was widely distributed in all tested tissues with a relatively high expression level in the mid-kidney, head-kidney and spleen. After Streptococcus iniae infection, the mRNA expression of AbNLRC3-like was significantly up-regulated at the pre-mortality period and the recovering period in valvula intestine, but it was significantly down-regulated around the mortality period in the duodenum and spleen. In splenic leukocyte, the mRNA expression of AbNLRC3-like was significantly induced by LPS, PGN and Poly(I:C). These results suggested that AbNLRC3-like may play a critical role in the immune response of Siberian sturgeon during pathogen challenge. To our best knowledge, this is the first report of the NLRC3 gene in sturgeon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA