Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cell Biochem Biophys ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39313643

RESUMO

Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill is a perennial wild weed species belonging to the Caryophyllaceae family and is widely available and abundant in the environment. The present study has aimed to evaluate the anti-inflammatory potential of two underutilized wild edible plants, Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill. fractions employing in-vitro COX inhibitory assay. Invitro COX-2 inhibitory potential of MESV and MESM fractions was carried out using BioVisionR "COX Activity Assay Kit (Fluorometric)". LC-MS analysis of selected fractions was conducted to identify bioactive compounds that were further validated for their affinity determination toward target enzymes employing molecular docking studies using the LibDock program. In-vitro COX inhibitory assay revealed that hexane fraction of S. vulgaris (HFSV) and hexane fraction of S. media (HFSM) caused impressive inhibition of COX-2 enzyme with IC50 values 1.38 µg/mL and 1.51 µg/mL respectively. Further, LC-MS analysis revealed the presence of 46 compounds in HFSV and 44 compounds in HFSM respectively. Amongst identified bioactive compounds in HFSV and HFSM, sinapinic acid and syringic acid showed good docking scores with COX-2 i.e., 89.256, and 82.168 respectively. Also, the availability of chrysin in HFSM and rhamnetin in HFSV exhibited good docking scores i.e., 115.092, and 112.341 with a selective affinity towards COX-2. The findings of in-vitro COX Inhibitory Activity and molecular docking studies highlighted the impressive anti-inflammatory properties of S. vulgaris and S. media, and require further investigations to establish them as therapeutic candidates in the management of inflammation and related issues.

2.
Angew Chem Int Ed Engl ; : e202411265, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183714

RESUMO

The [2+2] cycloaddition reaction between the Si=C double bond of adamantylsilene and the carbonyl group of aliphatic, aromatic or acetylenic ketones and aldehydes is demonstrated. The product of this reaction that is central to a non-ionic version of the Peterson olefination is an unusual four-membered 1,2-silaoxetane heterocycle that was characterized spectroscopically and crystallographically. In the presence of SiO2, the silaoxetane undergoes retro-cycloaddition with the formation of alkene products. As the [2+2] cycloaddition proceeds without the necessity of any base, enolizable ketones can be converted into olefins. In addition, it is shown that the adamantylsilene can be produced in situ by a sila-Peterson reaction, providing valuable input for the development of a new one-pot silicon-based reductive carbonyl-carbonyl cross coupling methodology.

3.
Ecol Evol ; 14(6): e11483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826168

RESUMO

The anther-smut host-pathogen system has provided extensive insights into the evolutionary ecology of disease resistance, transmission modes, host shifts, pathogen specialization, and disease evolution in metapopulations. It also has led to unexpected insights into sex ratio distorters, sex chromosome evolution, and transposable elements in fungi. In addition, anther-smut disease played a major role in Linnaeus' germ theory and the correspondence on parasitic castration between Darwin and Becker, one of the first female botanists. Here, we explicitly highlight some of the realities in the process of science, using an unusual autobiographical approach to describe how we came to collaborate on this system in the 1980s. Using perspectives from our different career stages, we present a surprising narrative that could not be deduced from merely reading the published papers. While our work was grounded in previous ecological and evolutionary theory, it was the product as much of empirical failures and intellectual roadblocks, as the result of a progressive scientific method. Our experiences illustrate not only the "human dimension of science" but more importantly show that linear sequences of hypothesis testing do not necessarily lead to new study systems and new ideas. We suggest there is a need to re-evaluate the scientific method in ecology and evolution, especially where the challenge is to engage in a productive dialog between natural history and theory.

4.
Ecology ; 105(8): e4373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923499

RESUMO

Climate change is rapidly altering the distribution of suitable habitats for many species as well as their pathogenic microbes. For many pathogens, including vector-borne diseases of humans and agricultural pathogens, climate change is expected to increase transmission and lead to pathogen range expansions. However, if pathogens have a lower heat tolerance than their host, increased warming could generate so-called thermal refugia for hosts. Predicting the outcomes of warming on disease transmission requires detailed knowledge of the thermal tolerances of both the host and the pathogen. Such thermal tolerance studies are generally lacking for fungal pathogens of wild plant populations, despite the fact that plants form the base of all terrestrial communities. Here, we quantified three aspects of the thermal tolerance (growth, infection, and propagule production) of the naturally occurring fungal pathogen Microbotryum lychnidis-dioicae, which causes a sterilizing anther-smut disease on the herbaceous plant Silene latifolia. We also quantified two aspects of host thermal tolerance: seedling survival and flowering rate. We found that temperatures >30°C reduced the ability of anther-smut spores to germinate, grow, and conjugate in vitro. In addition, we found that high temperatures (30°C) during or shortly after the time of inoculation strongly reduced the likelihood of infection in seedlings. Finally, we found that high summer temperatures in the field temporarily cured infected plants, likely reducing transmission. Notably, high temperatures did not reduce survival or flowering of the host plants. Taken together, our results show that the fungus is considerably more sensitive to high temperatures than its host plant. A warming climate could therefore result in reduced disease spread or even local pathogen extirpation, leading to thermal refugia for the host.


Assuntos
Temperatura Alta , Doenças das Plantas , Doenças das Plantas/microbiologia , Silene/microbiologia , Silene/fisiologia , Basidiomycota/fisiologia , Mudança Climática
5.
J Exp Bot ; 75(13): 3849-3861, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38652039

RESUMO

The oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), known as oxi-mCs, garners significant interest in plants as potential epigenetic marks. While research in mammals has established a role in cell reprogramming, carcinogenesis, and gene regulation, their functions in plants remain unclear. In rice, 5hmC has been associated with transposable elements (TEs) and heterochromatin. This study utilizes Silene latifolia, a dioecious plant with heteromorphic sex chromosomes and a genome with a large proportion of TEs, which provides a favourable environment for the study of oxi-mCs in individual sexes. Notably, we detected surprisingly high levels of oxi-mCs in S. latifolia comparable with mammals. Nuclei showed enrichment in heterochromatic regions, except for 5hmC whose signal was homogeneously distributed. Intriguingly, the same X chromosome in females displayed overall enrichment of 5hmC and 5fC compared with its counterpart. This fact is shared with 5mC, resembling dosage compensation. Co-localization showed higher correlation between 5mC and 5fC than with 5hmC, indicating no potential relationship between 5hmC and 5fC. Additionally, the promoter of several sex-linked genes and sex-biased TEs clustered in a clear sex-dependent way. Together, these findings unveil a hypothetical role for oxi-mCs in S. latifolia sex chromosome development, warranting further exploration.


Assuntos
Cromossomos de Plantas , Cromossomos Sexuais , Silene , Silene/genética , Cromossomos de Plantas/genética , Cromossomos Sexuais/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Elementos de DNA Transponíveis/genética , Epigênese Genética
6.
MethodsX ; 12: 102708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651001

RESUMO

Silene latifolia and S. dioica are model systems in studies of plant reproduction, chromosome evolution and sexual dimorphism, but sexing of plants based on morphology is only possible from flowering stage onwards. Both species show homogametic females (XX) and heterogametic males (XY).•Here we developed two assays (primer pairs ss816 and ss441) for molecular sexing of S. latifolia and S. dioica, targeting length polymorphisms between the X and Y-linked copies of the spermidine synthase gene.The two assays were successful in identifying known (flowering-stage) males and females from UK and Spanish populations, with an error rate of 3.1% (ss816; successful for both species) and 0% (ss441, only successful for S. latifolia). Our assays therefore represent novel tools for rapid, robust and simple determination of the genotypic sex of S. latifolia and S. dioica.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38561607

RESUMO

BACKGROUND: Silene undulata is historically used for inducing vivid and prophetic lucid dreams, but limited information exists on its phytochemical composition and potential pharmacological properties. OBJECTIVE: This study aimed to investigate the phytochemical composition of S. undulata through LC-MS/MS analysis and explore its potential serotonergic activity, which could support and confirm the traditional use of S. undulata as a dream-inducing plant. METHODS: LC-MS/MS analysis was conducted on S. undulata extract, identifying 51 phytochemicals, including norharman, harmalol, harmaline, harmine, and ibogaine alkaloids. ADMET and Molecular docking investigations were employed to assess the serotonergic potential of these compounds. RESULTS: The analysis revealed the presence of ß-carboline alkaloids, such as norharman, harmalol, harmaline, harmine, and ibogaine, within S. undulata extract. ADMET analysis showed that these compounds have a favourable pharmacokinetic properties. In addition, molecular docking investigations showed that harmaline (-8.90 Kcal/mol), harmalol (-8.56 Kcal/mol), and ibogaine (-8.75 Kcal/mol) exhibited binding affinities comparable to the control molecule, LSD (-9.14 Kcal/mol), indicating potential agonistic activity at serotonin 5-HT2A receptor. CONCLUSION: These findings provide insights into the potential therapeutic benefits of S. undulata, supporting its traditional use as a psychoactive plant. This study investigated the chemical constituents and potential serotonergic agonist activity of S. undulata for the first time. While promising, further research is necessary to uncover additional medicinal properties associated with the identified phytochemical components.

8.
Front Plant Sci ; 15: 1297676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529065

RESUMO

Introduction: Plants undergo various natural changes that dramatically modify their genomes. One is polyploidization and the second is hybridization. Both are regarded as key factors in plant evolution and result in phenotypic differences in different plant organs. In Silene, we can find both examples in nature, and this genus has a seed shape diversity that has long been recognized as a valuable source of information for infrageneric classification. Methods: Morphometric analysis is a statistical study of shape and size and their covariations with other variables. Traditionally, seed shape description was limited to an approximate comparison with geometric figures (rounded, globular, reniform, or heart-shaped). Seed shape quantification has been based on direct measurements, such as area, perimeter, length, and width, narrowing statistical analysis. We used seed images and processed them to obtain silhouettes. We performed geometric morphometric analyses, such as similarity to geometric models and elliptic Fourier analysis, to study the hybrid offspring of S. latifolia and S. dioica. Results: We generated synthetic tetraploids of Silene latifolia and performed controlled crosses between diploid S. latifolia and Silene dioica to analyze seed morphology. After imaging capture and post-processing, statistical analysis revealed differences in seed size, but not in shape, between S. latifolia diploids and tetraploids, as well as some differences in shape among the parentals and hybrids. A detailed inspection using fluorescence microscopy allowed for the identification of shape differences in the cells of the seed coat. In the case of hybrids, differences were found in circularity and solidity. Overal seed shape is maternally regulated for both species, whereas cell shape cannot be associated with any of the sexes. Discussion: Our results provide additional tools useful for the combination of morphology with genetics, ecology or taxonomy. Seed shape is a robust indicator that can be used as a complementary tool for the genetic and phylogenetic analyses of Silene hybrid populations.

9.
Ann Bot ; 133(3): 427-434, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38141228

RESUMO

BACKGROUND AND AIMS: Organelle genomes are usually maternally inherited in angiosperms. However, biparental inheritance has been observed, especially in hybrids resulting from crosses between divergent genetic lineages. When it concerns the plastid genome, this exceptional mode of inheritance might rescue inter-lineage hybrids suffering from plastid-nuclear incompatibilities. Genetically differentiated lineages of Silene nutans exhibit strong postzygotic isolation owing to plastid-nuclear incompatibilities, highlighted by inter-lineage hybrid chlorosis and mortality. Surviving hybrids can exhibit variegated leaves, which might indicate paternal leakage of the plastid genome. We tested whether the surviving hybrids inherited the paternal plastid genome and survived thanks to paternal leakage. METHODS: We characterized the leaf phenotype (fully green, variegated or white) of 504 surviving inter-lineage hybrids obtained from a reciprocal cross experiment among populations of four genetic lineages (W1, W2, W3 and E1) of S. nutans from Western Europe and genotyped 560 leaf samples (both green and white leaves for variegated hybrids) using six lineage-specific plastid single nucleotide polymorphisms. KEY RESULTS: A high proportion of the surviving hybrids (≤98 %) inherited the paternal plastid genome, indicating paternal leakage. The level of paternal leakage depended on cross type and cross direction. The E1 and W2 lineages as maternal lineages led to the highest hybrid mortality and to the highest paternal leakage from W1 and W3 lineages in the few surviving hybrids. This was consistent with E1 and W2 lineages, which contained the most divergent plastid genomes. When W3 was the mother, more hybrids survived, and no paternal leakage was detected. CONCLUSIONS: By providing a plastid genome potentially more compatible with the hybrid nuclear background, paternal leakage has the potential to rescue inter-lineage hybrids from plastid-nuclear incompatibilities. This phenomenon might slow down the speciation process, provided hybrid survival and reproduction can occur in the wild.


Assuntos
Magnoliopsida , Silene , Silene/genética , Plastídeos/genética , Genótipo , Padrões de Herança , Magnoliopsida/genética
10.
AoB Plants ; 15(6): plad074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130422

RESUMO

High-throughput sequencing of herbarium specimens' DNA with short-read platforms has helped explore many biological questions. Here, for the first time, we investigate the potential of using herbarium specimens as a resource for long-read DNA sequencing technologies. We use target capture of 48 low-copy nuclear loci in 12 herbarium specimens of Silene as a basis for long-read sequencing using SMRT PacBio Sequel. The samples were collected between 1932 and 2019. A simple optimization of size selection protocol enabled the retrieval of both long DNA fragments (>1 kb) and long on-target reads for nine of them. The limited sampling size does not enable statistical evaluation of the influence of specimen age to the DNA fragmentation, but our results confirm that younger samples, that is, collected after 1990, are less fragmented and have better sequencing success than specimens collected before this date. Specimens collected between 1990 and 2019 yield between 167 and 3403 on-target reads > 1 kb. They enabled recovering between 34 loci and 48 (i.e. all loci recovered). Three samples from specimens collected before 1990 did not yield on-target reads > 1 kb. The four other samples collected before this date yielded up to 144 reads and recovered up to 25 loci. Young herbarium specimens seem promising for long-read sequencing. However, older ones have partly failed. Further exploration would be necessary to statistically test and understand the potential of older material in the quest for long reads. We would encourage greatly expanding the sampling size and comparing different taxonomic groups.

11.
Ecol Evol ; 13(12): e10797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125956

RESUMO

The evolution of disease resistances is an expected feature of plant-pathogen systems, but whether the genetics of this trait most often produces qualitative or quantitative phenotypic variation is a significant gap in our understanding of natural populations. These two forms of resistance variation are often associated with differences in number of underlying loci, the specificities of host-pathogen coevolution, as well as contrasting mechanisms of preventing or slowing the infection process. Anther-smut disease is a commonly studied model for disease of wild species, where infection has severe fitness impacts, and prior studies have suggested resistance variation in several host species. However, because the outcome of exposing the individual host to this pathogen is binary (healthy or diseased), resistance has been previously measured at the family level, as the proportion of siblings that become diseased. This leaves uncertain whether among-family variation reflects contrasting ratios of segregating discrete phenotypes or continuous trait variation among individuals. In the host Silene vulgaris, plants were replicated by vegetative propagation in order to quantify the infection rates of the individual genotype with the endemic anther-smut pathogen, Microbotryum silenes-inflatae. The variance among field-collected families for disease resistance was significant, while there was unimodal continuous variation in resistance among genotypes. Using crosses between genotypes within ranked resistance quartiles, the offspring infection rate was predicted by the parental resistance values. While the potential remains in this system for resistance genes having major effects, as there were suggestions of such qualitative resistance in a prior study, here the quantitative disease resistance to the endemic anther-smut pathogen is indicated for S. vulgaris. The variation in natural populations and strong heritability of the trait, combined with severe fitness consequences of anther-smut disease, suggests that resistance in these host populations is highly capable of responding to disease-induced selection.

12.
Genome Biol Evol ; 15(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862134

RESUMO

The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on Pacific Bioscience HiFi, Hi-C, and Bionano technologies. The assembly produced 10 scaffolds (1 per chromosome) with a total length of 862 Mb and only ∼1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes.


Assuntos
Genoma Mitocondrial , Magnoliopsida , Silene , Silene/genética , Magnoliopsida/genética , Cromossomos , Cromossomos Sexuais
13.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631096

RESUMO

Acute kidney injury (AKI) is one of the major side effects of cisplatin, a remarkable anticancer agent. Therefore, there is a growing need to find an agent that could mitigate cisplatin-induced nephrotoxicity. Betulinic acid (BA) is a natural compound isolated from Silene succulenta Forssk for the first time, with miraculous biological activities and no reports of its effect on the nephrotoxicity induced by cisplatin. Mice received BA orally with doses of 30 and 50 mg/kg before the intraperitoneal injection of cisplatin. Betulinic acid was found to decrease serum levels of creatinine and tissue levels of NGAL and kidney injury molecule (KIM-1) and improve the histological changes in the kidney. In addition, BA decreased the oxidative stress marker malondialdehyde (MDA), increased superoxide dismutase (SOD) antioxidative activity and suppressed the intensity of IL-1B and NFкB immuno-staining. Interestingly, betulinic acid enhanced autophagy by increasing beclin 1, ATG5, and LC3II and decreasing p62 expressions. Thus, our findings suggest betulinic acid as a potential agent that may protect from acute kidney injury by targeting inflammation, oxidative stress, and autophagy processes. Novel drugs are needed to combat the spreading of multidrug resistance between pathogenic bacteria, especially uropathogenic isolates. So, we elucidated the antibacterial properties of BA on Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae. Betulinic acid had minimum inhibitory concentration values (128 to 512 µg/mL). In addition, it adversely affected the membrane integrity of the tested isolates. Accordingly, betulinic acid should be clinically investigated in the future for urinary tract diseases.

14.
PhytoKeys ; 227: 123-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325450

RESUMO

The new species Sileneisabellae is described and illustrated from the Skënderbëut mountain range of central Albania. It grows on the ultramafic mountain slopes around Qafë Shtamë, in the understorey of open Pinusnigra forests and in the rocky grasslands above the forest belt, at 1000-1600 m a.s.l. Sileneisabellae is a serpentine endemic likely belonging to section Elisanthe (Fenzl ex Endl.) Ledeb. and shows affinities with the widespread European species S.noctiflora L. It is sharply distinct from the latter species in habit, stem and leaf pubescence, morphology, and biology of the flowers and length of the carpophore. Moreover, the ecology of the two taxa is also contrasting, being S.noctiflora a synanthropic-ruderal, mostly in lowlands. Weaker similarities were also observed with the south European subalpine taxa of the group of S.vallesia L. of section Auriculatae (Boiss.) Schischk., though these are not likely to reflect a real systematic affinity.

15.
Curr Biol ; 33(12): 2504-2514.e3, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37290443

RESUMO

White campion (Silene latifolia, Caryophyllaceae) was the first vascular plant where sex chromosomes were discovered. This species is a classic model for studies on plant sex chromosomes due to presence of large, clearly distinguishable X and Y chromosomes that originated de novo about 11 million years ago (mya), but lack of genomic resources for this relatively large genome (∼2.8 Gb) remains a significant hurdle. Here we report S. latifolia female genome assembly integrated with sex-specific genetic maps of this species, focusing on sex chromosomes and their evolution. The analysis reveals a highly heterogeneous recombination landscape with strong reduction in recombination rate in the central parts of all chromosomes. Recombination on the X chromosome in female meiosis primarily occurs at the very ends, and over 85% of the X chromosome length is located in a massive (∼330 Mb) gene-poor, rarely recombining pericentromeric region (Xpr). The results indicate that the non-recombining region on the Y chromosome (NRY) initially evolved in a relatively small (∼15 Mb), actively recombining region at the end of the q-arm, possibly as a result of inversion on the nascent X chromosome. The NRY expanded about 6 mya via linkage between the Xpr and the sex-determining region, which may have been caused by expanding pericentromeric recombination suppression on the X chromosome. These findings shed light on the origin of sex chromosomes in S. latifolia and yield genomic resources to assist ongoing and future investigations into sex chromosome evolution.


Assuntos
Silene , Silene/genética , Evolução Molecular , Cromossomos Sexuais/genética , Cromossomo Y , Cromossomo X
16.
Microsc Res Tech ; 86(11): 1542-1547, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37382310

RESUMO

This study used the foliar epidermal anatomical characteristics through microscopic techniques to compare the foliar anatomy of Silene takesimensis Uyeki & Sakata (Caryophyllaceae). The species is endemic to South Korea. This study examined the foliar epidermal anatomical traits. The leaf morphological traits of the species are essential to distinguish the species from other taxa. The comparative systemic significance of the character species was examined. The epidermal cell shape, the epidermal cell wall, and the number of lobes per cell were among the distinctive foliar anatomical characteristics. The variations in quantitative characteristics were significant. The systematics of the genus Silene were supported by various microscopic methods. The foliar epidermal anatomical characteristics of the endemic species S. takesimensis have significant taxonomic characteristics to differentiate the species. RESEARCH HIGHLIGHTS: Silene takesimensis, a member of the Caryophyllaceae family, has been studied in-depth. Valuable insights and knowledge were obtained about the unique characteristics and behaviors of Silene takesimensis using SEM.

17.
PhytoKeys ; 225: 99-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252324

RESUMO

Sileneophioglossa Huan C. Wang & Feng Yang, a new species of Caryophyllaceae, is here described and illustrated based on morphological and molecular evidence. The new species was found in Sichuan and Yunnan provinces, southwest China. Phylogenetic analysis based on ITS sequences showed this new species belongs to section Cucubaloides. Morphologically, it resembles S.phoenicodonta and S.viscidula, which were also found in the southwest China, but clearly differs from the latter two species by having 5-7 mm long calyces with sparsely hirtellous and short glandular hairs, white petals, linear limbs and lobes, and absent or oblong-linear coronal scales. A distribution map and a table with morphological diagnostic characters of new species and its closest relatives are provided, as well as a preliminary conservation assessment of S.ophioglossa under the IUCN criteria.

18.
New Phytol ; 239(2): 766-777, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212044

RESUMO

There is growing evidence that cytonuclear incompatibilities (i.e. disruption of cytonuclear coadaptation) might contribute to the speciation process. In a former study, we described the possible involvement of plastid-nuclear incompatibilities in the reproductive isolation between four lineages of Silene nutans (Caryophyllaceae). Because organellar genomes are usually cotransmitted, we assessed whether the mitochondrial genome could also be involved in the speciation process, knowing that the gynodioecious breeding system of S. nutans is expected to impact the evolutionary dynamics of this genome. Using hybrid capture and high-throughput DNA sequencing, we analyzed diversity patterns in the genic content of the organellar genomes in the four S. nutans lineages. Contrary to the plastid genome, which exhibited a large number of fixed substitutions between lineages, extensive sharing of polymorphisms between lineages was found in the mitochondrial genome. In addition, numerous recombination-like events were detected in the mitochondrial genome, loosening the linkage disequilibrium between the organellar genomes and leading to decoupled evolution. These results suggest that gynodioecy shaped mitochondrial diversity through balancing selection, maintaining ancestral polymorphism and, thus, limiting the involvement of the mitochondrial genome in evolution of hybrid inviability between S. nutans lineages.


Assuntos
Genoma Mitocondrial , Silene , Silene/genética , Melhoramento Vegetal , Núcleo Celular/genética , Mitocôndrias/genética , Genoma Mitocondrial/genética , Evolução Molecular , Filogenia
19.
Genes (Basel) ; 14(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980816

RESUMO

The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of recombination in the NRY defines its main properties-genetic degeneration and accumulation of repetitive DNA, making X and Y chromosomes very different from each other. How and why recombination suppression on sex chromosomes evolves remains controversial. A strong difference in recombination rates between the sexes (heterochiasmy) can facilitate or even cause recombination suppression. In the extreme case-complete lack of recombination in the heterogametic sex (achiasmy)-the entire sex-specific chromosome is automatically non-recombining. In this study, I analyse sex-specific recombination rates in a dioecious plant Silene latifolia (Caryophyllaceae), which evolved separate sexes and sex chromosomes ~11 million years ago. I reconstruct high-density RNAseq-based genetic maps including over five thousand genic markers for the two sexes separately. The comparison of the male and female maps reveals only modest heterochiasmy across the genome, with the exception of the sex chromosomes, where recombination is suppressed in males. This indicates that heterochiasmy likely played only a minor, if any, role in NRY evolution in S. latifolia, as recombination suppression is specific to NRY rather than to the entire genome in males. Other mechanisms such as structural rearrangements and/or epigenetic modifications were likely involved, and comparative genome analysis and genetic mapping in multiple Silene species will help to shed light on the mechanism(s) of recombination suppression that led to the evolution of sex chromosomes.


Assuntos
Silene , Silene/genética , Evolução Molecular , Cromossomos Sexuais/genética , Cromossomo Y , Cromossomo X
20.
Am J Bot ; 110(6): e16147, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36827179

RESUMO

PREMISE: Co-flowering species that have not evolved an avoidance mechanism may have tolerance to heterospecific pollen (HP) deposition as an adaptive strategy to minimize any deleterious effects of HP transfer, but empirical evidence for the tolerance hypothesis remains scarce. METHODS: To estimate the potential effects of heterospecific pollen deposition (HPD) on female reproductive success, we counted conspecific (CP) and HP pollen grains deposited on stigmas and assessed subsequent seed set of both open- and hand-pollinated flowers in three co-flowering Silene species with exposed stigmas that usually received numerous HP grains on the elongated receptive area. RESULTS: The percentage of HP grains per flower (HP%) varied from 16.6% to 43.0% among three species. Silene chungtienensis had lower HP%, and the CP-HP relationship was neutral; S. gracilicaulis and S. yunnanensis had a relatively higher HP% with a positive CP-HP relationship. The effects of CP and HP number on natural seed set were positive for all three species, but HP% had stronger negative effects in S. chungtienensis and S. gracilicaulis. In hand-pollinated flowers of the three Silene species, seed set did not decrease with HP whether CP was in excess or insufficient, indicating no negative effects of HPD on seed production. CONCLUSIONS: Consistent with the tolerance hypothesis, our results indicated that species with higher HP interference are likely to be tolerant to an increase in HP%. These species with generalist-pollinated flowers and exposed large stigmas may benefit from an increase of conspecific pollen deposition, despite the associated increase in heterospecific pollen deposition.


Assuntos
Polinização , Silene , Pólen , Reprodução , Sementes , Flores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA