Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132295, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735615

RESUMO

Ovomucin-Complex extracted from egg white is expected to have a barrier function similar to gastric mucin. In this study, the dynamic changes in structure, rheological properties and binding ability of Ovomucin-Complex during in vitro simulated gastric digestion were investigated. The results from HPLC and CLSM showed that extremely acidic pH (pH = 2.0) promoted Ovomucin-Complex to form aggregation. Acid-induced aggregation may hinder its binding to pepsin, thus rendering Ovomucin-Complex resistant to pepsin. Consequently, most of the polymer structure and weak gel properties of Ovomucin-Complex retained after simulated gastric digestion as verified by HPLC, CLSM and rheological measurement, although there was a small breakdown of the glycosidic bond as confirmed by the increased content of reducing sugar. The significantly reduced hydrophobic interactions of Ovomucin-Complex were observed under extremely acidic conditions and simulated gastric digestion compared with the native. Noticeably, the undigested Ovomucin-Complex after simulated gastric digestion showed a higher affinity (KD = 5.0 ± 3.2 nm) for urease - the key surface antigen of Helicobacter pylori. The interaction mechanism between Ovomucin-Complex and urease during gastric digestion deserves further studies. This finding provides a new insight to develop an artificial physical mucus barrier to reduce Helicobacter pylori infection.


Assuntos
Digestão , Ovomucina , Urease , Urease/metabolismo , Urease/química , Ovomucina/química , Ovomucina/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica , Pepsina A/metabolismo , Pepsina A/química , Polimerização , Helicobacter pylori , Reologia , Humanos
2.
Environ Pollut ; 335: 122282, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516294

RESUMO

Human ingestion of microplastics (MPs) is common and inevitable due to the widespread contamination of food items, but implications on the gastric digestion of food proteins are still unknown. In this study, the interactions between pepsin and polystyrene (PS) MPs were evaluated by investigating enzyme activity and conformation in a simulated human gastric environment in the presence or absence of PS MPs. The impact on food digestion was also assessed by monitoring the kinetics of protein hydrolysis through static in vitro gastric digestion of cow's milk contaminated with PS. The binding of pepsin to PS showed that the surface chemistry of MPs dictates binding affinity. The key contributor to pepsin adsorption seems to be π-π interactions between the aromatic residues and the PS phenyl rings. During quick exposure (10 min) of pepsin to increasing concentrations (222, 2219, 22188 particles/mL) of 10 µm PS (PS10) and 100 µm PS (PS100), total enzymatic activities were not affected remarkably. However, upon prolonged exposure at 1 and 2 h, preferential binding of pepsin to the small, low zeta-potential PS caused structural changes in the protein which led to a significant reduction of its activity. Digestion of cow's milk mixed with PS10 resulted in transient accumulation of larger peptides (10-35 kDa) and reduced bioavailability of short peptides (2-9 kDa) in the gastric phase. This, however, was only observed at extremely high PS10 concentration (0.3 mg/mL or 5.46E+05 particles/mL). The digestion of milk peptides, bound preferentially over pepsin within the hard corona on the PS10 surface, was delayed up to 15 min in comparison to bulk protein digestion. Intact caseins, otherwise rapidly digested, remained bound to PS10 in the hard corona for up to 15 min. This work presents valuable insights regarding the interaction of MPs, food proteins, and pepsin, and their dynamics during gastric digestion.


Assuntos
Proteínas do Leite , Pepsina A , Humanos , Proteínas do Leite/metabolismo , Pepsina A/metabolismo , Microplásticos , Poliestirenos , Plásticos , Peptídeos/química , Peptídeos/metabolismo , Caseínas/química , Caseínas/metabolismo , Alérgenos , Digestão
3.
Food Res Int ; 164: 112351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737940

RESUMO

Limited studies in the literature have compared in vitro dynamic and in vitro static protocols for modelling the gastric digestive process of food systems. This experiment explores the differences between two different in vitro approaches to the devolution of a transglutaminase-induced acid gel (TG, pH 5.1-5.3) and rennet-induced gel (RG, pH 6.5-6.7). Gels were exposed to a simulated oral phase, followed by either the dynamic DIDGI® or static COST action INFOGEST protocol to simulate gastric conditions. Protein hydrolysis was evident from 15 min onwards for TG exposed to the dynamic protocol where levels continued to increase at a steady rate. In contrast, RG exhibited a notable lag-phase before levels increased from around 60 min onwards. Under the static protocol, protein hydrolysis was observed for both TG and RG upon exposure to the gastric environment which continued to increase over time. Despite these differences, similar levels of protein hydrolysis were found for TG and RG at the gastric endpoint using either protocol demonstrating that both the dynamic DIDGI® and static COST action INFOGEST methods provide a suitable and comparable environment for the in vitro digestion of casein protein under simulated gastric conditions.


Assuntos
Caseínas , Transglutaminases , Caseínas/metabolismo , Digestão , Géis
4.
J Agric Food Chem ; 69(47): 14241-14249, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784201

RESUMO

Research on gastric lipolysis of commercial cow's milk with different fatty acid (FA) compositions is scarce. Gastric lipase exhibits specificity for the sn-3 chain position of triacylglycerols, whose structure is influenced by milk FA composition. Therefore, during gastric digestion of conventional (C) vs pasture-based (P) milk, differences may occur on lipolysis, which has impact on free FA available, influencing their absorption/metabolism rate and physiological hormonal responses. Those two milk types were subjected to the INFOGEST semi-dynamic digestion model. Five gastric emptying points were analyzed for oxidative degradation of polyunsaturated fatty acids (PUFA) and individual free FA. The relative release of medium-chain FA (C8:0-C12:0) was higher than that of longer-chain FA (C14:0-C18:0), and a linear increase in markers of PUFA oxidative degradation occurred along gastric digestion. Quantitatively, C8:0, C18:2n-6, C18:3n-3, and CLAc9t11 were higher (P < 0.001) in P milk when compared with C milk.


Assuntos
Lipólise , Leite , Animais , Bovinos , Digestão , Ácidos Graxos , Feminino , Lactação , Triglicerídeos
5.
Nanomaterials (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199726

RESUMO

Oral exposure to nanoparticles (NPs) during early life is an understudied area. The goals of this study were to evaluate the effect of pre-weaned rat gastric fluids on 50 nm CuO NPs and TiO2 E171 in vitro, and to evaluate uptake in vivo. The NP uptake was studied in vivo in male and female Sprague-Dawley rat pups following oral administration of four consecutive daily doses of 10 mg/kg CuO NPs, TiO2 E171, or vehicle control (water) between postnatal day (PND) 7-10. Rat pups were sacrificed on either PND10 or PND21. Simulated digestion led to dissolution of CuO NPs at the later ages tested (PND14 and PND21, but not PND7). In vivo intestinal uptake of CuO NPs and TiO2 E171 was observed by hyperspectral imaging of intestinal cross sections. Brightfield microscopy showed that the number of immune cells increased in the intestinal tissue following NP administration. Orally administered NPs led to low intestinal uptake of NPs and an increase in immune cells in the small and large intestine, suggesting that oral exposure to NPs during early life may lead to irritation or a low-grade inflammation. The long-term impact of increased immune cells in the intestinal tract during early life is unknown.

6.
J Sci Food Agric ; 100(4): 1735-1740, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31821565

RESUMO

BACKGROUND: Oxidation of food lipids occurs in the gastrointestinal tract, resulting in potential adverse health effects. Rosemary extract (RE), as one of the most popular naturally sourced antioxidants, is widely used in the food industry. However, the effect of RE on lipid oxidation during gastrointestinal digestion has not been well investigated. Therefore, this study aimed to evaluate the effect of RE on lipid oxidation of cooked pork during simulated gastric digestion. RESULTS: Results showed that RE at 12.5, 25, 50, and 100 mg kg-1 pork effectively decreased the formation of malondialdehyde during simulated gastric digestion of cooked pork. RE also effectively mitigated the decline of fatty acids during the simulated gastric digestion of pork. The total phenolic content in RE was calculated to be 170.67 mg gallic acid equivalent (GAE) g-1 . RE dissolved in distilled water (pH 6.5) or potassium hydrogen phthalate-hydrochloric acid buffer solution (0.2 mol L-1 , pH 3.0) both exhibited strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activities as well as ferric reducing capacity. The inhibitory effects of RE on lipid oxidation of cooked pork during simulated gastric digestion may be attributed to the phenolic compounds with antioxidant properties. CONCLUSION: The results lend support to the possible application of rosemary or RE as a rich source of natural antioxidants to inhibit the oxidation of food lipids during gastrointestinal digestion. © 2019 Society of Chemical Industry.


Assuntos
Mucosa Gástrica/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Carne/análise , Extratos Vegetais/análise , Rosmarinus/química , Animais , Antioxidantes/análise , Culinária , Digestão , Humanos , Modelos Biológicos , Oxirredução , Suínos
7.
Food Chem ; 276: 619-625, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30409640

RESUMO

Infant formula products are predominantly manufactured using cow milk protein; goat milk also provides a suitable protein source. In this study, we directly compared cow and goat milk protein digestion using pH and enzyme conditions to simulate infant gastric conditions. Generated peptides, identified using liquid chromatography coupled to a mass spectrometer, show both similarities and differences in cow and goat milk post-digestion profiles. The majority of peptides were from casein proteins, 50% representing ß-casein, with many peptides unique to each species. Low or no peptides for ß-Lactoglobulin and α-Lactalbumin, respectively, suggest these proteins were highly resistant to infant gastric digestion, as reported by others. Minor milk proteins, comprising 5% of peptides, were represented by different proteins from cow and goat. Peptides with known bioactivities were also observed, both in common and unique to each species. Together these data may explain reported differences in digestion characteristics of cow and goat milk.


Assuntos
Biomimética , Digestão , Cabras , Leite/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Estômago/fisiologia , Animais , Bovinos , Feminino , Mucosa Gástrica/metabolismo , Humanos , Lactente , Proteínas do Leite/metabolismo
8.
Food Biophys ; 13(2): 124-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755300

RESUMO

The objective of this study was to analyse the impact of the gel structure obtained by different heat-induced temperatures on the in vitro gastric digestibility at pH 2. To achieve this, gels were prepared from soy protein, pea protein, albumin from chicken egg white and whey protein isolate at varying temperatures (90, 120 and 140 °C) for 30 min. Gels were characterised prior to digestion via microstructure and SDS-PAGE analysis. Subsequently, the gastric digestion process was followed via the protein hydrolysis and HPSEC analysis up to 180 min. Peptides of different sizes (<5 kDa) were gradually formed during the digestion. Our results showed that gels induced at 140 °C were digested faster. The protein source and gelation temperature had great influence on the in vitro gastric protein digestibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA