Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Cell Rep ; 43(7): 114391, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923459

RESUMO

Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.

2.
Fish Shellfish Immunol ; 150: 109662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821229

RESUMO

SIRT6, a key member of the sirtuin family, plays a pivotal role in regulating a number of vital biological processes, including energy metabolism, oxidative stress, and immune system modulation. Nevertheless, the function of SIRT6 in bony fish, particularly in the context of antiviral immune response, remains largely unexplored. In this study, a sirt6 was cloned and characterized in a commercial fish, the Chinese perch (Siniperca chuatsi). The SIRT6 possesses conserved SIR2 domain with catalytic core region when compared with other vertebrates. Tissue distribution analysis indicated that sirt6 was expressed in all detected tissues, and the sirt6 was significantly induced following infection of infectious haemorrhagic syndrome virus (IHSV). The overexpression of SIRT6 resulted in significant upregulation of interferon-stimulated genes (ISGs), such as viperin, mx, isg15, irf3 and ifp35, and inhibited viral replication. It was further found that SIRT6 was located in nucleus and could enhance the expression of ISGs induced by type I and II IFNs. These findings may provide new information in relation with the function of SIRT6 in vertebrates, and with viral prevention strategy development in aquaculture.


Assuntos
Sequência de Aminoácidos , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata , Percas , Filogenia , Infecções por Rhabdoviridae , Sirtuínas , Animais , Sirtuínas/genética , Sirtuínas/imunologia , Sirtuínas/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Imunidade Inata/genética , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Regulação da Expressão Gênica/imunologia , Percas/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária
3.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815580

RESUMO

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Assuntos
Proteínas de Ciclo Celular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Fúngico/genética , RNA Interferente Pequeno/genética
4.
mBio ; 15(6): e0044524, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682948

RESUMO

Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and ß-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE: Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.


Assuntos
Candida albicans , Candidíase , Parede Celular , Evasão da Resposta Imune , Sirtuína 2 , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/imunologia , Parede Celular/metabolismo , Animais , Candidíase/microbiologia , Candidíase/imunologia , Camundongos , Sirtuína 2/metabolismo , Sirtuína 2/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Virulência , Modelos Animais de Doenças , Deleção de Genes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Camundongos Endogâmicos BALB C , Feminino
5.
Biogerontology ; 25(4): 705-737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38619670

RESUMO

Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.


Assuntos
Extratos Vegetais , Folhas de Planta , Polyalthia , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Sirtuína 2 , Superóxido Dismutase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA/métodos , Metanol/química , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Gene ; 918: 148473, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615982

RESUMO

How gene activation works in heterochromatin, and how the mechanism might differ from the one used in euchromatin, has been largely unexplored. Previous work has shown that in SIR-regulated heterochromatin of Saccharomyces cerevisiae, gene activation occurs in the absence of covalent histone modifications and other alterations of chromatin commonly associated with transcription.Here we demonstrate that such activation occurs in a substantial fraction of cells, consistent with frequent transcriptional bursting, and this raises the possibility that an alternative activation pathway might be used. We address one such possibility, Pol II CTD phosphorylation, and explore this idea using a natural telomere-linked gene, YFR057w, as a model. Unlike covalent histone modifications, we find that Ser2, Ser5 and Ser7 CTD phosphorylated Pol II is prevalent at the drug-induced heterochromatic gene. Particularly enriched relative to the euchromatic state is Ser2 phosphorylation. Consistent with a functional role for Ser2P, YFR057w is negligibly activated in cells deficient in the Ser2 CTD kinases Ctk1 and Bur1 even though the gene is strongly stimulated when it is placed in a euchromatic context. Collectively, our results are consistent with a critical role for Ser2 CTD phosphorylation in driving Pol II recruitment and transcription of a natural heterochromatic gene - an activity that may supplant the need for histone epigenetic modifications.


Assuntos
Heterocromatina , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosforilação , Heterocromatina/metabolismo , Heterocromatina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Serina/metabolismo
7.
J Biol Chem ; 300(5): 107273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588806

RESUMO

The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.


Assuntos
DNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Resposta a Proteínas não Dobradas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Ribossômico/metabolismo , DNA Ribossômico/genética , Bicamadas Lipídicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Nicotinamidase/metabolismo , Nicotinamidase/genética , Sirtuína 2/metabolismo , Sirtuína 2/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Glicoproteínas de Membrana
8.
Plants (Basel) ; 13(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475557

RESUMO

Sirtuins participate in chromatin remodeling and gene expression regulation during stress responses. They are the only deacetylases that couple the cellular NAD+-dependent energy metabolism with transcriptional regulation. They catalyze the production of nicotinamide, inhibiting sirtuin 2 (SIR2) activity in vivo. The SIR2 homolog, AtSRT2, deacetylates non-histone proteins associated with mitochondrial energy metabolism. To date, AtSRT2 mechanisms during stress responses in Arabidopsis thaliana remain unclear. The transduction of mitochondrial metabolic signals links the energy status to transcriptional regulation, growth, and stress responses. These signals induce changes by regulating nuclear gene expression. The present study aimed to determine the role of SRT2 and its product nicotinamide in the development of A. thaliana and the expression of osmotic stress-response genes. Leaf development was greater in srt2+ plants than in the wild type, indicating that SET2 plays a role in energy metabolism. Treatment with polyethylene glycol activated and inhibited gene expression in srt2- and srt2+ lines, respectively. Therefore, we concluded that SRT2-stimulated plant growth and repressed signaling are associated with osmotic stress.

9.
Mol Cell ; 83(24): 4586-4599.e5, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096827

RESUMO

SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD+ upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers. When assembled with SIR2, HerA forms a hexamer and converts SIR2 from a nuclease to an NAD+ hydrolase, representing an unexpected regulatory mechanism mediated by protein assembly. Furthermore, high concentrations of ATP can inhibit NAD+ hydrolysis by the SIR2-HerA complex. Cryo-EM structures of the SIR2-HerA complex reveal a giant supramolecular assembly up to 1 MDa, with SIR2 as a dodecamer and HerA as a hexamer, crucial for anti-phage defense. Unexpectedly, the HerA hexamer resembles a spiral staircase and exhibits helicase activities toward dual-forked DNA. Together, we reveal the supramolecular assembly of SIR2-HerA as a unique mechanism for switching enzymatic activities and bolstering anti-phage defense strategies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sirtuínas , Fagos T , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , NAD , Sirtuínas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo
10.
Mol Cell ; 83(24): 4600-4613.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096825

RESUMO

In response to the persistent exposure to phage infection, bacteria have evolved diverse antiviral defense mechanisms. In this study, we report a bacterial two-component defense system consisting of a Sir2 NADase and a HerA helicase. Cryo-electron microscopy reveals that Sir2 and HerA assemble into a ∼1 MDa supramolecular octadecamer. Unexpectedly, this complex exhibits various enzymatic activities, including ATPase, NADase, helicase, and nuclease, which work together in a sophisticated manner to fulfill the antiphage function. Therefore, we name this defense system "Nezha" after a divine warrior in Chinese mythology who employs multiple weapons to defeat enemies. Our findings demonstrate that Nezha could sense phage infections, self-activate to arrest cell growth, eliminate phage genomes, and subsequently deactivate to allow for cell recovery. Collectively, Nezha represents a paradigm of sophisticated and multifaceted strategies bacteria use to defend against viral infections.


Assuntos
Caudovirales , Escherichia coli , Adenosina Trifosfatases , Microscopia Crioeletrônica , DNA Helicases , NAD+ Nucleosidase , Escherichia coli/enzimologia , Escherichia coli/virologia
11.
Cell Biochem Funct ; 41(8): 1514-1525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014740

RESUMO

Nutrient-sensing plays a crucial role in maintaining cellular energy and metabolic homeostasis. Perturbations in sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Very little is understood about sensing fluctuations in nutrients and how this information is integrated into physiological and metabolic adaptation that could further affect cell-fate decisions during differentiation in Dictyostelium discoideum (henceafter, Dictyostelium). Glucose is the primary metabolic fuel among all nutrients. Carbohydrates, lipids and proteins ultimately breakdown into glucose, which is further used for providing energy. The maintenance of optimum glucose levels is important for efficient cell-survival. Glucose is not only a nutrient, but also a signaling molecule influencing cell growth and differentiation in Dictyostelium. Modulation of endogenous glucose levels either by varying exogenous glucose levels or genetic overexpression or deletion of genes involved in glucose signaling lead to changes in endogenous metabolite levels such as ADP/ATP ratio, NAD+ /NADH ratio, cAMP and ROS levels which further influence cell-fate decisions. Here, we show that AMPKα and Sir2D are components of glucose-signaling pathway in Dictyostelium which adjust cell metabolism interdependently in response to nutrient-status and promote cell-fate decisions.


Assuntos
Dictyostelium , Dictyostelium/genética , Dictyostelium/metabolismo , Transdução de Sinais , Diferenciação Celular , Ciclo Celular , Glucose/metabolismo
12.
Front Microbiol ; 14: 1285559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029141

RESUMO

Silent information regulator 2 (Sir2) is a conserved NAD+-dependent histone deacetylase crucial for regulating cellular stress response and the aging process in Saccharomyces cerevisiae. In this study, we investigated the molecular mechanism underlying how the absence of Sir2 can lead to altered stress susceptibilities in S. cerevisiae under different environmental and physiological conditions. In a glucose-complex medium, the sir2Δ strain showed increased sensitivity to H2O2 compared to the wild-type strain during the post-diauxic phase. In contrast, it displayed increased resistance during the exponential growth phase. Transcriptome analysis of yeast cells in the post-diauxic phase indicated that the sir2Δ mutant expressed several oxidative defense genes at lower levels than the wild-type, potentially accounting for its increased susceptibility to H2O2. Interestingly, however, the sir2Δras2Δ double mutant exhibited greater resistance to H2O2 than the ras2Δ single mutant counterpart. We found that the expression regulation of the cytoplasmic catalase encoded by CTT1 was critical for the increased resistance to H2O2 in the sir2Δras2Δ strain. The expression of the CTT1 gene was influenced by the combined effect of RAS2 deletion and the transcription factor Azf1, whose level was modulated by Sir2. These findings provide insights into the importance of understanding the intricate interactions among various factors contributing to cellular stress response.

13.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569599

RESUMO

Quercetin (QUER) is a natural polyphenolic compound endowed with beneficial properties for human health, with anti-aging effects. However, although this flavonoid is commercially available as a nutraceutical, target molecules/pathways underlying its pro-longevity potential have yet to be fully clarified. Here, we investigated QUER activity in yeast chronological aging, the established model for simulating the aging of postmitotic quiescent mammalian cells. We found that QUER supplementation at the onset of chronological aging, namely at the diauxic shift, significantly increases chronological lifespan (CLS). Consistent with the antioxidant properties of QUER, this extension takes place in concert with a decrease in oxidative stress. In addition, QUER triggers substantial changes in carbon metabolism. Specifically, it promotes an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis due to improved catabolism of C2 by-products of yeast fermentation and glycerol. The former is attributable to the Sir2-dependent activity of phosphoenolpyruvate carboxykinase and the latter to the L-glycerol 3-phosphate pathway. Such a combined increased supply of gluconeogenesis leads to an increase in the reserve carbohydrate trehalose, ensuring CLS extension. Moreover, QUER supplementation to chronologically aging cells in water alone amplifies their long-lived phenotype. This is associated with intracellular glycerol catabolism and trehalose increase, further indicating a QUER-specific influence on carbon metabolism that results in CLS extension.


Assuntos
Longevidade , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Longevidade/genética , Glicerol/farmacologia , Glicerol/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Trealose/metabolismo , Gluconeogênese , Carbono/metabolismo
14.
Genes Dis ; 10(3): 864-876, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396554

RESUMO

The skeletal system is a dynamically balanced system, which undergoes continuous bone resorption and formation to maintain bone matrix homeostasis. As an important ADP-ribosylase and NAD+-dependent deacylase, SIRT6 (SIR2-like protein 6) is widely expressed on various kinds of bone cells, such as chondrocytes, osteoblasts, osteoclasts. The aberration of SIRT6 impairs gene expression (e.g., NF-κB and Wnt target genes) and cellular functions (e.g., DNA repair, glucose and lipid metabolism, telomeric maintenance), which disturbs the dynamic balance and ultimately leads to several bone-related diseases. In this review, we summarize the critical roles of SIRT6 in the onset and progression of bone-related diseases including osteoporosis, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, as well as the relevant signaling pathways. In addition, we discuss the advances in the development of SIRT6 activators and elucidate their pharmacological profiles, which may provide novel treatment strategies for these skeletal diseases.

15.
Front Pharmacol ; 14: 1136897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153808

RESUMO

Sanghuangporus Sanghuang is a fungus species. As a traditional Chinese medicine, it is known for antitumor, antioxidant and anti-inflammatory properties. However, the antiaging effect of S. Sanghuang has not been deeply studied. In this study, the effects of S. Sanghuang extract (SSE) supernatants on the changes of nematode indicators were investigated. The results showed that different concentrations of SSE prolonged the lifespans of nematodes and substantially increased these by 26.41%. In addition, accumulations of lipofuscin were also visibly reduced. The treatment using SSE also played a role in increasing stress resistance, decreasing ROS accumulations and obesity, and enhancing the physique. RT-PCR analysis showed that the SSE treatment upregulated the transcription of daf-16, sir-2.1, daf-2, sod-3 and hsp-16.2, increased the expression of these genes in the insulin/IGF-1 signalling pathway and prolonged the lifespans of nematodes. This study reveals the new role of S. Sanghuang in promoting longevity and inhibiting stress and provides a theoretical basis for the application of S. Sanghuang in anti-ageing treatments.

16.
Neurosci Bull ; 39(7): 1117-1130, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37041405

RESUMO

Resveratrol (RES), a natural polyphenolic phytochemical, has been suggested as a putative anti-aging molecule for the prevention and treatment of Alzheimer's disease (AD) by the activation of sirtuin 1 (Sirt1/Sir2). In this study, we tested the effects of RES and Sirt1/Sir2 on sleep and courtship memory in a Drosophila model by overexpression of amyloid precursor protein (APP), whose duplications and mutations cause familial AD. We found a mild but significant transcriptional increase of Drosophila Sir2 (dSir2) by RES supplementation for up to 17 days in APP flies, but not for 7 days. RES and dSir2 almost completely reversed the sleep and memory deficits in APP flies. We further demonstrated that dSir2 acts as a sleep promotor in Drosophila neurons. Interestingly, RES increased sleep in the absence of dSir2 in dSir2-null mutants, and RES further enhanced sleep when dSir2 was either overexpressed or knocked down in APP flies. Finally, we showed that Aß aggregates in APP flies were reduced by RES and dSir2, probably via inhibiting Drosophila ß-secretase (dBACE). Our data suggest that RES rescues the APP-induced behavioral deficits and Aß burden largely, but not exclusively, via dSir2.


Assuntos
Doença de Alzheimer , Proteínas de Drosophila , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Resveratrol/farmacologia , Sirtuína 1 , Sono
17.
J Biomol Struct Dyn ; 41(1): 263-279, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809531

RESUMO

Chromosome segregation is a crucial phenomenon in the cell cycle and defects in genome segregation result in an abnormality in various cellular events. Unlike higher eukaryotes, chromosome segregation and a number of cell cycle events are unusual in the protozoan parasite Entamoeba histolytica (E. histolytica). Characterization of Sir2 proteins from E. histolytica may reveal its unique cellular events as they play role in diverse cellular processes including chromosome segregation. E. histolytica has four homologs of Sir2 proteins. EhSir2a and EhSir2b show sequence similarity towards eukaryotic Sir2 homologs, whereas EhSir2c and EhSir2d are more like prokaryotic sirtuins. Using both computational and experimental methods, EhSir2c has been characterized in this study. The three-dimensional structure of EhSir2c is predicted by homology modelling. The protein interactors of EhSir2c have been identified by yeast-two-hybrid screening against the cDNA library of E. histolytica. We have identified a novel interactor, EhRAD23 which is a homolog of UV excision repair protein RAD23. The interaction of EhSir2c and EhRAD23 was validated by pull-down assay. UV-C irradiation up-regulates the relative expression of EhSir2c, suggesting the necessity of EhSir2c in UV-induced stress in this parasite.Communicated by Ramaswamy H. Sarma.


Assuntos
Entamoeba histolytica , Humanos , Entamoeba histolytica/genética , Divisão Celular , Ciclo Celular , Reparo do DNA , Proteínas de Protozoários/química
18.
19.
Appl Biochem Biotechnol ; 194(12): 5702-5716, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802237

RESUMO

Monascus species are the producers of Monascus azaphilone pigments (MonAzPs) and lipid-lowering component Monacolin K, which have been widely used as food colorant and health products. In this study, silent information regulator 2 (Sir2) homolog (MrSir2) was characterized, and its impacts on the development and MonAzPs production of Monascus ruber were evaluated. Enzyme activity test in vitro showed that MrSir2 was an NAD+-dependent histone deacetylase. Compared to WT, Δmrsir2 strain accumulated more acetylated lysine residues of histone H3 subunit during its vegetative growth phase, and it exhibited accelerated mycelial aging, more spores, increased resistance to oxidative stress, and more MonAzPs production. RNA-Seq-based transcriptome analysis revealed that MrSir2 mainly regulated the gene expression in macromolecular metabolism such as carbohydrates, proteins, and nucleotides, as well as genes encoding cell wall synthesis and cell membrane component, indicating that MrSir2 probably facilitates the metabolic transition from the primary growth phase to the mycelial aging. Taken together, MrSir2 mainly targets H3 subunit at the vegetative growth phase and affects the development of M. ruber and MonAzPs production.


Assuntos
Monascus , Monascus/metabolismo , Pigmentos Biológicos , Benzopiranos/metabolismo
20.
Eur J Nutr ; 61(8): 4179-4190, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35864340

RESUMO

PURPOSE: Agaro-oligosaccharides (AGO), hydrolysis products of agarose, is known to have antioxidant and anti-inflammatory properties. Speculating that AGO is effective for preventing aging, we investigated the longevity-supporting effects of AGO and their mechanisms using Caenorhabditis elegans. METHODS: Caenorhabditis elegans were fed AGO from young adulthood. The lifespan, locomotory activity, lipofuscin accumulation, and heat stress resistance of the worms were examined. To elucidate mechanisms of AGO-mediated longevity, we conducted comprehensive expression analysis using microarrays. Moreover, we used quantitative real-time PCR (qRT-PCR) to verify the genes showing differential expression levels. Furthermore, we measured the lifespan of loss-of-function mutants to determine the genes related to AGO-mediated longevity. RESULTS: AGO extended the lifespan of C. elegans, reduced lipofuscin accumulation, and maintained vigorous locomotion. The microarray analysis revealed that the endoplasmic reticulum-unfolded protein response (ER-UPR) and insulin/insulin-like growth factor-1-mediated signaling (IIS) pathway were activated in AGO-fed worms. The qRT-PCR analysis showed that AGO treatment suppressed sir-2.1 expression, which is a negative regulator of ER-UPR. In loss-of-function mutant of sir-2.1, AGO-induced longevity and heat stress resistance were decreased or cancelled completely. Furthermore, the pro-longevity effect of AGO was decreased in loss-of-function mutants of abnormal Dauer formation (daf) -2 and daf-16, which are IIS pathway-related genes. CONCLUSION: AGO delays the C. elegans aging process and extends their lifespan through the activations of ER-UPR and the IIS pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Insulinas , Sirtuínas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ágar/metabolismo , Ágar/farmacologia , Antioxidantes/farmacologia , Sefarose/metabolismo , Sefarose/farmacologia , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Resposta a Proteínas não Dobradas , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Insulinas/genética , Insulinas/metabolismo , Insulinas/farmacologia , Fatores de Transcrição Forkhead/genética , Sirtuínas/genética , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA