Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Protein Expr Purif ; 223: 106559, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089400

RESUMO

We have functionally characterized the high-affinity phosphate transporter (PiPT) from the root endophyte fungus Piriformospora indica. PiPT belongs to the major facilitator superfamily (MFS). PiPT protein was purified by affinity chromatography (Ni-NTA) and Size Exclusion Chromatography (SEC). The functionality of solubilized PiPT was determined in detergent-solubilized state by fluorescence quenching and in proteoliposomes. In the fluorescence quenching assay, PiPT exhibited a saturation concentration of approximately 2 µM, at a pH of 4.5. Proteoliposomes of size 121.6 nm radius, showed transportation of radioactive phosphate. Vmax was measured to be 232.2 ± 11 pmol/min/mg protein. We have found Km to be 45.8 ± 6.2 µM suggesting high affinity towards phosphate.

2.
MethodsX ; 13: 102822, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39105089

RESUMO

This work describes protocols for preparing specific forms of human platelet lysates from pooled platelet concentrates (PCs) and the isolation of platelet-derived extracellular vesicles (p-EVs). Clinical-grade PCs can be sourced from blood establishments immediately following expiration for transfusion use. Here, we describe methods to process PCs into specific lysates from which p-EVs can be isolated. Each lysate type is prepared using platelet activation and processing methods which produce distinct products that may be useful in different applications. For example, serum-converted platelet lysate (SCPL)-EVs were recently shown to have powerful therapeutic properties following myocardial infarction in mice. EVs can be isolated from all products using size exclusion chromatography, producing pure and consistent p-EVs from multiple batches. Together, these methods allow isolation of p-EVs with excellent potential for clinical and preclinical applications.•Platelet concentrates (PCs) obtained from local blood establishments are reliable and sustainable sources to generate biomaterials.•We outline five distinct methods of platelet lysate generation and one method for extracellular vesicle isolation.•Each platelet lysate form has different biological properties which may be suitable for certain applications.

3.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126063

RESUMO

Small extracellular vesicles (EVs) play a pivotal role in intercellular communication across various physiological and pathological contexts. Despite their growing significance as disease biomarkers and therapeutic targets in biomedical research, the lack of reliable isolation techniques remains challenging. This study characterizes vesicles that were isolated from conditioned culture media (CCM) sourced from three myeloma cell lines (MM.1S, ANBL-6, and ALMC-1), and from the plasma of healthy donors and multiple myeloma patients. We compared the efficacy, reproducibility, and specificity of isolating small EVs using sucrose cushion ultracentrifugation (sUC) vs. ultrafiltration combined with size-exclusion chromatography (UF-SEC). Our results demonstrate that UF-SEC emerges as a more practical, efficient, and consistent method for EV isolation, outperforming sUC in the yield of EV recovery and exhibiting lower variability. Additionally, the comparison of EV characteristics among the three myeloma cell lines revealed distinct biomarker profiles. Finally, our results suggest that HBS associated with Tween 20 improves EV recovery and preservation over PBS. Standardization of small EV isolation methods is imperative, and our comparative evaluation represents a significant step toward achieving this goal.


Assuntos
Cromatografia em Gel , Vesículas Extracelulares , Mieloma Múltiplo , Sacarose , Ultracentrifugação , Mieloma Múltiplo/patologia , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Ultracentrifugação/métodos , Cromatografia em Gel/métodos , Linhagem Celular Tumoral , Reprodutibilidade dos Testes , Meios de Cultivo Condicionados/química
4.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966969

RESUMO

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia Líquida
5.
J Pharm Sci ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972546

RESUMO

The quantification of both polymer and drug during the dissolution of an amorphous solid dispersion (ASD) in aqueous media arouses great interest and may aid in the formulation. However, the available quantification methods for polymer excipients are limited, expensive, and challenging compared to drugs. In this work, a size exclusion chromatography method (HPLC-SEC) was developed and validated to determine the concentration of a frequently used polymer excipient, Soluplus® (Sol). In order to develop a method for the quantification of dissolved Soluplus®, two methods (SEC-UV and SEC-RID) with two injection volumes were tested with standard solutions of three different batches of Soluplus. The developed HPLC-SEC-UV method showed acceptable linearity (R2 > 0.9990) for all batches of Soluplus, good accuracies above a concentration of 0.1 mg/mL (coefficient of variation < 2 %), relatively good precision at a concentration of 0.1 mg/mL (coefficient of variation < 2.5 %), and high recoveries at a concentration of 0.75 mg/mL (coefficient of variation < 0.5 %). The presence of Felodipine (Fel) and Lumefantrine (Lum) in the liquid media did not interfere with Soluplus quantification. The use of various surfactants, such as Tween® 80, Tween® 20, Span® 80, Span® 20, Kolliphor® TPGS, and sodium lauryl sulphate at a low concentration (0.005 mg/mL) did not show any effect on Soluplus® and did not interfere with Soluplus® quantification with any of the Soluplus batches. The addition of lithium bromide (LiBr) to the mobile phase within a concentration range of 0.05-1.0 M did not improve Soluplus® quantification.

6.
J Virol ; : e0104624, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016557

RESUMO

The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.

7.
Proteomics ; : e2400036, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004851

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.

8.
Int J Biol Macromol ; 276(Pt 2): 133977, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029846

RESUMO

The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38996753

RESUMO

Metalloproteins binding with trace elements play a crucial role in biological processes and on the contrary, those binding with exogenous heavy metals have adverse effects. However, the methods for rapid, high sensitivity and simultaneous analysis of these metalloproteins are still lacking. In this study, a fast method for simultaneously determination of both essential and toxic metal-containing proteins was developed by coupling size exclusion chromatography (SEC) with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). After optimization of the separation and detection conditions, seven metalloproteins with different molecular weight (from 16.0 to 443.0 kDa) were successfully separated within 10 min and the proteins containing iron (Fe), copper (Cu), zinc (Zn), iodine (I) and lead (Pb) elements could be simultaneously detected with the use of oxygen as the collision gas in ICP-MS/MS. Accordingly, the linear relationship between log molecular weight and retention time was established to estimate the molecular weight of unknown proteins. Thus, the trace metal and toxic metal containing proteins could be detected in a single run with high sensitivity (detection limits in the range of 0.0020-2.5 µg/mL) and good repeatability (relative standard deviations lower than 4.5 %). This method was then successfully used to analyze metal (e.g., Pb, Zn, Cu and Fe) binding proteins in the blood of Pb-intoxicated patients, and the results showed a negative correlation between the contents of zinc and lead binding proteins, which was identified to contain hemoglobin subunit. In summary, this work provided a rapid and sensitive tool for screening metal containing proteins in large number of biological samples.


Assuntos
Cromatografia em Gel , Limite de Detecção , Metaloproteínas , Espectrometria de Massas em Tandem , Cromatografia em Gel/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Reprodutibilidade dos Testes , Metaloproteínas/sangue , Metaloproteínas/química , Metaloproteínas/análise , Modelos Lineares , Metais Pesados/sangue , Metais Pesados/análise , Metais Pesados/química , Animais
10.
J Environ Manage ; 366: 121750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972193

RESUMO

The study of dissolved organic matter (DOM) presents a significant challenge for environmental analyses and the monitoring of wastewater treatment plants (WWTPs). This is particularly true for the tracking of recalcitrant to biodegradation dissolved organic matter (rDOM) compounds, which is generated during the thermal pretreatment of sludge. This study aims to develop analytical and chemometric methods to differentiate melanoidins from humic acids (HAs), two components of rDOM that require monitoring at various stages of wastewater treatment processes due to their distinct biological effects. The developed method implements the separation of macromolecules through ultra-high-performance liquid chromatography size-exclusion chromatography (U-HPLC SEC) followed by online UV and fluorescence detection. UV detection was performed at 210, 254, and 280 nm, and fluorescence detection at six excitation/emission pairs: 230/355 nm, 270/355 nm, 240/440 nm, 270/500 nm, 330/425 nm, and 390/500 nm. Chromatograms obtained for each sample from these nine detection modes were integrated and separated into four molecular fractions: >40 kDa, 20-40 kDa, 10-20 kDa, and <10 kDa. To enhance analytical resolution and normalize the data, ratios were calculated from the areas of chromatographic peaks obtained for each detection mode. The results demonstrate the utility of these ratios in discriminating samples composed of HAs, melanoidins, and their mixtures, through principal component analysis (PCA). Low molecular weight fractions were found to be specific to melanoidins, while high molecular weight fractions were characteristic of HAs. For the detection modes specific to melanoidins, UV absorbance at 210, 254, and 280 nm were predominantly present in the numerators, with tryptophan-like fluorescence emissions in the denominators. Conversely, fluorescence emissions largely represented both numerators and denominators for HAs. This online method also enables the discrimination of pseudo-melanoidins, compounds revealing a nitrogen deficiency in their chemical structures.


Assuntos
Cromatografia em Gel , Substâncias Húmicas , Águas Residuárias , Substâncias Húmicas/análise , Águas Residuárias/química , Águas Residuárias/análise , Cromatografia Líquida de Alta Pressão , Esgotos/química , Esgotos/análise , Compostos Orgânicos/análise , Compostos Orgânicos/química
11.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891833

RESUMO

In the last few years, several studies have emphasized the existence of injury-specific EV "barcodes" that could have significant importance for the precise diagnosis of different organ injuries in polytrauma patients. To expand the research potential of the NTF (network trauma research) biobank of polytraumatized patients, the NTF research group decided to further establish a biobank for EVs. However, until now, the protocols for the isolation, characterization, and storage of EVs for biobank purposes have not been conceptualized. Plasma and serum samples from healthy volunteers (n = 10) were used. Three EV isolation methods of high relevance for the work with patients' samples (ultracentrifugation, size exclusion chromatography, and immune magnetic bead-based isolation) were compared. EVs were quantified using nanoparticle tracking analysis, EV proteins, and miRNAs. The effects of different isolation solutions; the long storage of samples (up to 3 years); and the sensibility of EVs to serial freezing-thawing cycles and different storage conditions (RT, 4/-20/-80 °C, dry ice) were evaluated. The SEC isolation method was considered the most suitable for EV biobanking. We did not find any difference in the quantity of EVs between serum and plasma-EVs. The importance of particle-free PBS as an isolation solution was confirmed. Plasma that has been frozen for a long time can also be used as a source of EVs. Serial freezing-thawing cycles were found to affect the mean size of EVs but not their amount. The storage of EV samples for 5 days on dry ice significantly reduced the EV protein concentration.


Assuntos
Bancos de Espécimes Biológicos , Vesículas Extracelulares , Traumatismo Múltiplo , Humanos , Vesículas Extracelulares/metabolismo , Traumatismo Múltiplo/metabolismo , Traumatismo Múltiplo/sangue , Manejo de Espécimes/métodos , Cromatografia em Gel/métodos , Masculino , Ultracentrifugação/métodos , MicroRNAs/sangue , MicroRNAs/genética , Adulto , Feminino
12.
Heliyon ; 10(11): e31672, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868030

RESUMO

Amauroderma rugosum (Blume and T. Nees) Torrend is a traditionally well-known mushroom that is used for the treatment of cancer. In order to evaluate the pharmacological activities of A. rugosum polysaccharides, the mushroom powder was subjected to hot water extraction and pure polysaccharides (ARPs) were isolated by gel-filtration method. Three important APRs called ARP-1, ARP-2 and ARP-5 were identified with average molecular weights of 1494, 450, and 7 kDa respectively. Their antioxidant abilities were estimated by examining free radical scavenging potential against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical (ABTS●+), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH●), and hydroxyl radical. Immunomodulatory potentials of these ARPs were determined using murine macrophage cells. These polysaccharides exhibited high antioxidant abilities and stimulated mouse macrophages leading to the generation of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Excellent activities were displayed by ARP-1 and APR-2. Gas chromatography and spectroscopic (FT-IR and NMR) methods were employed in order to carry out their structural characterisation. The two high molecular weight ARPs (ARP-1 and ARP-2) displayed ß-(1 â†’ 3)-D-glucan backbone structure with branching of ß-(1 â†’ 6)-d-glucopyranosyl. These observations suggest high potential of ARPs for immunotherapeutic applications.

13.
J Extracell Biol ; 3(2): e138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38939900

RESUMO

Extracellular vesicles (EVs) are cell derived membranous nanoparticles. EVs are important mediators of cell-cell communication via the transfer of bioactive content and as such they are being investigated for disease diagnostics as biomarkers and for potential therapeutic cargo delivery to recipient cells. However, existing methods for isolating EVs from biological samples suffer from challenges related to co-isolation of unwanted materials such as proteins, nucleic acids, and lipoproteins. In the pursuit of improved EV isolation techniques, we introduce multimodal flowthrough chromatography (MFC) as a scalable alternative to size exclusion chromatography (SEC). The use of MFC offers significant advantages for purifying EVs, resulting in enhanced yields and increased purity with respect to protein and nucleic acid co-isolates from conditioned 3D cell culture media. Compared to SEC, significantly higher EV yields with similar purity and preserved functionality were also obtained with MFC in 2D cell cultures. Additionally, MFC yielded EVs from serum with comparable purity to SEC and similar apolipoprotein B content. Overall, MFC presents an advancement in EV purification yielding EVs with high recovery, purity, and functionality, and offers an accessible improvement to researchers currently employing SEC.

14.
Proteomics ; : e2400025, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895962

RESUMO

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.

15.
Vaccine ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918102

RESUMO

Pneumococcal conjugate vaccines (PCV) typically consist of capsular polysaccharides from different S. pneumoniae serotypes which are covalently attached to carrier protein. A well-established process to manufacture PCV is through activating polysaccharide by oxidation of vicinal diols to aldehydes, followed by protein conjugation via reductive amination. Polysaccharide activation is a crucial step that affects vaccine product critical attributes including conjugate size and structure. Therefore, it is highly desired to have robust analytical methods to well characterize this activation process. In this study, using pneumococcal serotype 6A as the model, we present two complimentary analytical methods for characterization of activated polysaccharide. First, a size exclusion chromatography (SEC) method was developed for quantitative measurement of polysaccharide activation levels. This SEC method demonstrated good assay characteristics on accuracy, precision and linearity. Second, a gold nanoparticle labeled cryo-electron microscopy (Cryo-EM) technique was developed to visualize activation site distribution along polysaccharide chain and provide information on activation heterogeneity. These two complimentary methods can be utilized to control polysaccharide activation process and ensure consistent delivery of conjugate vaccine products.

16.
Biol Proced Online ; 26(1): 18, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898416

RESUMO

BACKGROUND: The lack of standardized protocols for isolating extracellular vesicles (EVs), especially from biobank-stored blood plasma, translates to limitations for the study of new biomarkers. This study examines whether a combination of current isolation methods could enhance the specificity and purity of isolated EVs for diagnosis and personalized medicine purposes. RESULTS: EVs were isolated from healthy human plasma stored for one year by ultracentrifugation (UC), size exclusion chromatography (SEC), or SEC and UC combined (SEC + UC). The EV isolates were then characterized by transmission electron microscopy imaging, nanoparticle tracking analysis (NTA) and western blotting. Proteomic procedures were used to analyze protein contents. The presence of EV markers in all isolates was confirmed by western blotting yet this analysis revealed higher albumin expression in EVs-UC, suggesting plasma protein contamination. Proteomic analysis identified 542 proteins, SEC + UC yielding the most complex proteome at 364 proteins. Through gene ontology enrichment, we observed differences in the cellular components of EVs and plasma in that SEC + UC isolates featured higher proportions of EV proteins than those derived from the other two methods. Analysis of proteins unique to each isolation method served to identify 181 unique proteins for the combined approach, including those normally appearing in low concentrations in plasma. This indicates that with this combined method, it is possible to detect less abundant plasma proteins by proteomics in the resultant isolates. CONCLUSIONS: Our findings reveal that the SEC + UC approach yields highly pure and diverse EVs suitable for comprehensive proteomic analysis with applications for the detection of new biomarkers in biobank-stored plasma samples.

17.
J Chromatogr A ; 1729: 465042, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38852271

RESUMO

Aqueous mode size exclusion chromatography (SEC) was employed for the analysis and construction of molecular weight (MW) calibration curves of three water-soluble polymers, namely, polyethylene glycol, polyethylene oxide, and polyacrylic acid sodium salt. Several calibration curves were obtained, varying chromatographic conditions such as columns arrangement, ionic strength, temperature and pH, in addition trends in polymeric chromatographic behavior were examined. The variation in SEC distribution coefficients at different temperatures was found to be below 10 %, indicating that the studied polymers follow an ideal SEC mechanism under the tested conditions. Thus, differences in chromatographic behavior were ascribed to changes in polymer configuration induced by media and/or temperature. These variations in morphology were consistent with the observed SEC behavior. Regarding MW calibration, polynomial regression models ranging from first to fifth order were applied, and the most adequate ones were selected based on their fit and prediction capabilities. Third order polynomials were the preferred models for polyethylene glycol and polyacrylic acid sodium salt, independently of chromatographic conditions. Meanwhile for polyethylene oxide, either third or fifth-order polynomial models were optimal depending on the chromatographic conditions. All the selected regression models presented coefficients of multiple determination (R2) above 0.990, while achieving relative errors of prediction (REP%) in MW ranging from 0.3 to 4 % for cross-validation.


Assuntos
Cromatografia em Gel , Peso Molecular , Polietilenoglicóis , Cromatografia em Gel/métodos , Calibragem , Polietilenoglicóis/química , Concentração Osmolar , Polímeros/química , Concentração de Íons de Hidrogênio , Resinas Acrílicas/química , Temperatura
18.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892442

RESUMO

Biopharmaceutical products, in particular messenger ribonucleic acid (mRNA), have the potential to dramatically improve the quality of life for patients suffering from respiratory and infectious diseases, rare genetic disorders, and cancer. However, the quality and safety of such products are particularly critical for patients and require close scrutiny. Key product-related impurities, such as fragments and aggregates, among others, can significantly reduce the efficacy of mRNA therapies. In the present work, the possibilities offered by size exclusion chromatography (SEC) for the characterization of mRNA samples were explored using state-of-the-art ultra-wide pore columns with average pore diameters of 1000 and 2500 Å. Our investigation shows that a column with 1000 Å pores proved to be optimal for the analysis of mRNA products, whatever the size between 500 and 5000 nucleotides (nt). We also studied the influence of mobile phase composition and found that the addition of 10 mM magnesium chloride (MgCl2) can be beneficial in improving the resolution and recovery of large size variants for some mRNA samples. We demonstrate that caution should be exercised when increasing column length or decreasing the flow rate. While these adjustments slightly improve resolution, they also lead to an apparent increase in the amount of low-molecular-weight species (LMWS) and monomer peak tailing, which can be attributed to the prolonged residence time inside the column. Finally, our optimal SEC method has been successfully applied to a wide range of mRNA products, ranging from 1000 to 4500 nt in length, as well as mRNA from different suppliers and stressed/unstressed samples.


Assuntos
Cromatografia em Gel , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/química , Cromatografia em Gel/métodos , Humanos , Porosidade , Peso Molecular , Cloreto de Magnésio/química
19.
J Chromatogr A ; 1730: 465051, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38852241

RESUMO

Size exclusion chromatography (SEC) is unique among chromatographic methods as it allows separation of non-retained analytes. However, such mechanism often put an analytical scientist in front of relatively poorly resolved set of peaks that may have strikingly different abundance. The description of such chromatograms needs a particular approach to accurately capture the overall quality of separation. Consequently, use of a single parameter description may not be accurate enough and therefore we introduce a dimensionless separation quality factor, which is based on five SEC specific measures (peak-to-valley, elution window width, peak widths, peak-positioning and recovery). Combining several factors allowed detailed differentiation of various simulated separations, clearly correlating column characteristics with specific contributions to separation quality whether they concern a single peak pair or entire peak landscape. The method could be further elaborated by the addition of normalized priority weighting allowing for flexible quality quantification of a relevant portion of real-life nucleic acid separation on different columns. With growing complexity of biotherapeutics to be separated, such a term is predicted to be a useful response function for purposes of factorial method optimization.


Assuntos
Cromatografia em Gel , Cromatografia em Gel/métodos , Ácidos Nucleicos/isolamento & purificação , Ácidos Nucleicos/análise , Ácidos Nucleicos/química
20.
Environ Pollut ; 356: 124382, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897280

RESUMO

Aerated compost teas (ACTs) are rich in soluble humic substances (SHS) that have high affinity for metals, notably Cu. Using a batch experiment, we measured the extent to which two ACTs altered Cu dynamics in vineyard topsoils one day and 21 days after their addition. Soils were extracted with 0.01 M KCl, and total Cu concentration, free Cu ion fraction and size distribution of Cu ligands were measured in the extraction solution to assess the impact of ACT on the mobility of Cu. Diffusive gradient in thin film (DGT) measurements were carried out to assess the effect of ACT on Cu bioavailability, and the dissociation rate of Cu-SHS complexes was measured. The results revealed that ACT increased the mobility of Cu from a factor 1.2 to 5.8 depending on the soil, the ACT and the incubation time. Cu mobilization was associated with an increase in absorbance at 254 nm and a decrease in the free Cu ion fraction in the KCl extract. Associated with the strong agreement between the size distribution of SHS and that of Cu ligands in the KCl extract of soils treated with ACT, these results showed that Cu was mobilized through complexation by the SHS present in ACTs. A fraction of the SHS supplied with ACTs sorbed onto the soil constituents, notably in calcareous soils where this fraction reached 86% for ACT B. Between 15% and 50% of the SHS remaining in solution degraded between day one and day 21 under the presumed action of microflora. This explains why the Cu mobilization efficiency of ACTs was on average lower in calcareous soils than in non-calcareous soils, and decreased with time. Lastly, ACT increased the bioavailability of Cu in soils from a factor 1.3 to 4.2, due to the relatively high dissociation rate of Cu-SHS complexes.


Assuntos
Compostagem , Cobre , Substâncias Húmicas , Poluentes do Solo , Solo , Solo/química , Cobre/análise , Poluentes do Solo/análise , Substâncias Húmicas/análise , Chá/química , Fazendas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA