RESUMO
Objective: Keloids represent a symptomatic, aberrant healing process that is difficult to treat with high recurrence rates spanning from 55% to 100% if treated via excision without adjuvant therapy. Electrical stimulation (ES) has demonstrated findings that suggest it could reduce the recurrence rate of keloids after resection. Therefore, the aim of this study is to conduct a scoping review to investigate ES as an adjuvant therapy for decreasing keloid recurrence after excision. Approach: A scoping review was performed using PubMed and Web of Science databases. The search strategy encompassed terms linking keloids and various aspects of electrical stimulation. Results: Our search yielded 2,229 articles, of which 115 articles were analyzed as full text and 1 article met inclusion criteria. Despite this, ES has demonstrated other evidence that suggests its utility. ES has been shown to counter keloidic features by reducing mast cell counts, shifting wound composition from M2 to M1 macrophages, promoting angiogenesis, and controlling fibroblast orientation and location. An alternating current will orient fibroblasts perpendicular to the current without unintended migration. Innovation: Our study indicates that, based on a compilation of clinical and preclinical in vitro data, the optimal scenario for ES in the role of keloid treatment is after excision with a biphasic pulsed application and square waveform. Conclusions: ES could serve as a multifaceted, adjuvant treatment after keloid excision, steering the healing process away from keloid-associated characteristics. Its cost-effectiveness means it could be adopted globally, providing a strategy to mitigate the burden of keloids irrespective of other available treatments or economic conditions.
RESUMO
We evaluated the expression profiles of differentially expressed miRNAs (DEmiRNAs) involved in human fetal skin development via high-throughput sequencing to explore the expression difference and the regulatory role of miRNA in different stages of fetal skin development. Analysis of expression profiles of miRNAs involved collecting embryo samples via high-throughput sequencing, then bioinformatics analyses were performed to validate DEmiRNAs. A total of 363 miRNAs were differentially expressed during the early and mid-pregnancy of development, and upregulated DEmiRNAs were mainly concentrated in the let-7 family. The transfection of let-7b-5p slowed down HaCaT cell proliferation and promoted apoptosis, as evidenced by the cell counting kit-8 assay, quantitative real-time polymerase chain reaction, and flow cytometry. The double luciferin reporter assay also confirmed let-7b-5p and ΔNp63 downregulation through the combination with the 3'-untranslated region of ΔNp63. Moreover, treatment with a let-7b-5p inhibitor upregulated ΔNp63 and activated the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. The let-7b-5p caused a converse effect on HaCaT cells because of Np63 upregulation. Let-7b-5p regulates skin development by targeting ΔNp63 via PI3K-AKT signaling, contributing to future studies on skin development and clinical scar-free healing.
RESUMO
Second-degree burns require greater care, as the damage is more extensive and worrisome and the use of a biomaterial can help in the cell repair process, with better planning, low cost, and better accessibility. Arnica has anti-inflammatory and analgesic properties in skin lesions treatments and laser therapy is another therapeutic alternative for burns. Evaluate the effects of arnica incorporated into PVA associated or not with low intensity laser on burns in rats. PVA and PVA with arnica (PVA+A) were obtained and characterized physicochemically. Through in vivo studies, the effects of PVA and PVA+A with or without the application of laser on the lesions allowed histological and immunohistochemical analyzes. PVA+A was biocompatible and with sustained release of the active, being a promising pharmacological tool and confirmed that laser therapy was effective in accelerating the healing process, due to its potential biomodulator, improving inflammatory aspects, promoting rapid healing in skin lesions.
Assuntos
Queimaduras , Álcool de Polivinil , Cicatrização , Animais , Álcool de Polivinil/química , Queimaduras/terapia , Cicatrização/efeitos dos fármacos , Ratos , Ratos Wistar , Masculino , Pele/lesões , Pele/patologia , Materiais Biocompatíveis/química , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Terapia a Laser/métodos , Membranas Artificiais , Terapia com Luz de Baixa Intensidade/métodosRESUMO
INTRODUCTION: In vitro and pre-marketing clinical data have shown the healing properties of a postbiotic extract from Aquaphilus dolomiae (ADE-G2). The effectiveness and tolerability of an ADE-G2-based cream were therefore evaluated for the management of minor skin impairment and wound healing in a large population of subjects in routine clinical practice. METHODS: A real-world, international, pre-post comparative study was conducted in infants, children, and adults with various types of superficial skin impairment who used the study product daily for around 3 weeks according to their dermatologist's advice. Immediate and follow-up changes in dermatologic signs and symptoms were assessed through clinical scoring. User satisfaction, overall product effectiveness, and tolerability were also evaluated. Analyses were performed in the whole study population and in subject subgroups according to skin impairment type and age. RESULTS: Overall, 1317 subjects (83.1% adults, 72.0% female) were included. Dermatologists reported effectiveness and "good" or "very good" tolerability of the cream in 93.8% (1221/1302) and 98.5% (1278/1297) of subjects, respectively. Immediate symptom relief after the first application was reported by 88.3% (849/962) of subjects. After several weeks of regular use (16.7 ± 11.6 days), dermatologic signs and symptoms significantly improved in the whole study population and in the subgroups, with mean decreases in severity scores ranging from -34.5% to -92.5% (p < 0.0001). The smallest improvements were found in subjects with oncologic treatment-related skin impairment. At study end, most users (> 95%) were "very satisfied" or "satisfied" with the cream and found that skin healing was rapid and of good quality. CONCLUSION: The ADE-G2-based cream proved to be effective and well tolerated in real-life conditions for the management of minor skin impairment in a large and varied cohort of subjects. This product, used as a standalone or adjunctive regimen, can help accelerate the healing of various types of superficial skin impairment.
RESUMO
Advancements in medicine have led to continuous enhancements and innovations in wound dressing materials, making them pivotal in medical care. We used natural biological macromolecules, γ-polyglutamic acid and gum arabic as primary raw materials to create nanofibers laden with curcumin by blending electrostatic spinning technology in the current investigation. These nanofibers were meticulously characterized using fluorescence microscopy, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Our comprehensive analyses confirmed the successful encapsulation of curcumin within the nanofiber carrier and it has uniform diameter, good water absorption and mechanical properties. Subsequently, we evaluated the antimicrobial effects of these curcumin-loaded nanofibers against Staphylococcus aureus through an oscillating flask method. We created a mouse model with acute full-thickness skin defects to further investigate the wound healing potential. We conducted various biochemical assays to elucidate the mechanism of action. The results revealed that curcumin nanofibers profoundly impacted wound healing. They bolstered the expression of TGF-ß1 and VEGF and reduced the expression of inflammatory factors, leading to an accelerated re-epithelialization process, enhanced wound contraction, and increased regeneration of new blood vessels and hair follicles. Furthermore, these nanofibers positively influenced the proportion of three different collagen types. This comprehensive study underscores the remarkable potential of curcumin-loaded nanofibers to facilitate wound healing and lays a robust experimental foundation for developing innovative, natural product-based wound dressings.
Assuntos
Curcumina , Goma Arábica , Nanofibras , Ácido Poliglutâmico , Staphylococcus aureus , Cicatrização , Goma Arábica/química , Nanofibras/química , Curcumina/farmacologia , Curcumina/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Pele/efeitos dos fármacosRESUMO
Background: While current wound treatment strategies often focus on antimicrobials and topical agents, the role of nutrition in wound healing and aesthetic outcomes is crucial but frequently overlooked. This review assesses the impact of specific nutrients and preoperative nutritional status on surgical outcomes. Methods: A comprehensive search was conducted in PubMed, Scopus, Web of Science, and the Cochrane Library, from the inception of the study to October 2023. The study focused on the influence of macronutrients and micronutrients on aesthetic outcomes, the optimization of preoperative nutritional status, and the association between nutritional status and postoperative complications. Inclusion criteria were English language peer-reviewed articles, systematic reviews, meta-analyses, and clinical trials related to the impact of nutrition on skin wound healing and aesthetic outcomes. Exclusion criteria included non-English publications, non-peer-reviewed articles, opinion pieces, and animal studies. Results: Omega-3 fatty acids and specific amino acids were linked to enhanced wound-healing and immune function. Vitamins A, B, and C and zinc positively influenced healing stages, while vitamin E showed variable results. Polyphenolic compounds showed anti-inflammatory effects beneficial for recovery. Malnutrition was associated with increased postoperative complications and infections, whereas preoperative nutritional support correlated with reduced hospital stays and complications. Conclusion: Personalized nutritional plans are essential in surgical care, particularly for enhanced recovery after surgery protocols. Despite the demonstrated benefits of certain nutrients, gaps in research, particularly regarding elements such as iron, necessitate further studies. Nutritional assessments and interventions are vital for optimal preoperative care, underscoring the need for more comprehensive guidelines and research in nutritional management for surgical patients.
RESUMO
The application of traditional materials to tissue healing in sports rehabilitation training has problems such as poor effect, high rejection reaction, and slow healing speed. It also brings many challenges to the development of sports rehabilitation training. This article aims to explore the impact of composite conjugated materials on tissue healing to promote rapid and efficient tissue healing and improve the effect of sports rehabilitation training. Through research and analysis, this article found that composite conjugated materials have unique biocompatibility and can promote cell growth and differentiation. In skin tissue healing, composite conjugated materials can control the release rate and duration of drugs to promote skin healing. During the fracture healing process, conjugated materials can provide growth factors and extracellular matrix components, stimulate bone cell proliferation and differentiation, and promote fracture healing. In terms of soft tissue injuries, composite conjugated materials serve as supporting structures or matrices, providing a favorable environment for the regeneration of damaged tissue. In the regulation of inflammatory responses, composite conjugated materials reduce inflammatory responses and accelerate the healing process by modulating immune responses. The results of this study show that 1 week after the experiment, the skin healing rates of the control group and the experimental group were 42.55% and 58.17% respectively; 5 weeks after the experiment, the skin healing rates of the control group and the experimental group were 51.28% and 73.24% respectively. After 1, 2, 3, 4, and 5 weeks of experiment, it was found that the average tissue repair rates of the control group were 44.03%, 54.18%, 58.40%, 67.08%, and 72.09% respectively, and the average tissue repair rates of the experimental group were 52.18%, 61.91%, 63.40%, 74.61%, and 85.05% respectively. This study highlights the huge potential of composite conjugated materials in promoting tissue healing and tissue repair, and is of great significance for promoting technological progress in the field of sports rehabilitation and improving rehabilitation effects.
RESUMO
Retinyl palmitate (RP) is a vitamin A derivative that has been widely used in anti-aging and skin treatment. The aim of this study is to investigate the effect of RP on UVB (Ultraviolet radiation B) induced photoaging and its potential mechanism. Immunofluorescence assay demonstrates that RP can reduce collagen degradation in skin cells by UVB radiation and reduce apoptosis of skin cells. Cell migration assay reveals that RP can increase cell migration rate, helping to repair skin damage and restore cell viability. Immunohistochemical assays indicate that RP can significantly reduce the expression of IL-6, IL-1ß, TNF-α induced by UVB radiation. Moreover, metabolomics and transcriptomics results suggest that RP regulates several metabolic pathways and gene expression, particularly in inflammatory signaling pathways, collagen synthesis and apoptosis, exhibiting significant regulatory effects. Furthermore, network pharmacological analysis predicts that RP may affect UVB-induced photoaging by regulating multiple key proteins and signaling pathways. Overall, this study demonstrates that RP has significant anti-photoaging ability, acting through several pathways including inhibition of inflammatory response, promotion of collagen synthesis and inhibition of apoptosis. These results provide a scientific basis for the application of RP in skin anti-photoaging and therapy, enabling the potential usage of RP to skin care products.
RESUMO
Introduction: In-stent restenosis (ISR) is a major challenge in interventional cardiology. Both ISR and excessive skin healing are aberrant hyperplasic responses, which may be functionally related. However, the cellular component underlying ISR remains unclear, especially regarding vascular homeostasis. Recent evidence suggest that novel immune cell populations may be involved in vascular repair and damage, but their role in ISR has not been explored. The aims of this study is to analyze (i) the association between ISR and skin healing outcomes, and (ii) the alterations in vascular homeostasis mediators in ISR in univariate and integrative analyses. Methods: 30 patients with ≥1 previous stent implantation with restenosis and 30 patients with ≥1 stent without restenosis both confirmed in a second angiogram were recruited. Cellular mediators were quantified in peripheral blood by flow cytometry. Skin healing outcomes were analyzed after two consecutive biopsies. Results: Hypertrophic skin healing was more frequent in ISR patients (36.7%) compared to those ISR-free (16.7%). Patients with ISR were more likely to develop hypertrophic skin healing patterns (OR 4.334 [95% CI 1.044-18.073], p=0.033), even after correcting for confounders. ISR was associated with decreased circulating angiogenic T-cells (p=0.005) and endothelial progenitor cells (p<0.001), whereas CD4+CD28null and detached endothelial cells counts were higher (p<0.0001 and p=0.006, respectively) compared to their ISR-free counterparts. No differences in the frequency of monocyte subsets were found, although Angiotensin-Converting Enzyme expression was increased (non-classical: p<0.001; and intermediate: p<0.0001) in ISR. Despite no differences were noted in Low-Density Granulocytes, a relative increase in the CD16- compartment was observed in ISR (p=0.004). An unsupervised cluster analysis revealed the presence of three profiles with different clinical severity, unrelated to stent types or traditional risk factors. Conclusion: ISR is linked to excessive skin healing and profound alterations in cellular populations related to vascular repair and endothelial damage. Distinct cellular profiles can be distinguished within ISR, suggesting that different alterations may uncover different ISR clinical phenotypes.
Assuntos
Reestenose Coronária , Células Endoteliais , Humanos , Células Endoteliais/patologia , Reestenose Coronária/etiologia , Reestenose Coronária/patologia , Stents/efeitos adversos , FenótipoRESUMO
Purpose: Delayed skin healing in diabetic wounds is a major clinical problem. The tRNA-derived small RNAs (tsRNAs) were reported to be associated with diabetes. However, the role of tsRNAs in diabetic wound healing is unclear. Our study was designed to explore the tsRNA expression profile and mine key potential tsRNAs and their mechanism in diabetic wounds. Methods: Skin tissues of patients with diabetic foot ulcers and healthy controls were subjected to small RNA sequencing. The role of candidate tsRNA was explored by loss- and gain-of-function experiments in HUVECs. Results: A total of 55 differentially expressed tsRNAs were identified, including 12 upregulated and 43 downregulated in the diabetes group compared with the control group. These tsRNAs were mainly concentrated in intercellular interactions and neural function regulation in GO terms and enriched in MAPK, insulin, FoxO, calcium, Ras, ErbB, Wnt, T cell receptor, and cGMP-PKG signaling pathways. tRF-Gly-CCC-039 expression was upregulated in vivo and in vitro in the diabetic model. High glucose disturbed endothelial function in HUVECs, and tRF-Gly-CCC-039 mimics further harmed HUVECs function, characterized by the suppression of proliferation, migration, tube formation, and the expression of Coll1a1, Coll4a2, and MMP9. Conversely, the tRF-Gly-CCC-039 inhibitor could attenuate high-glucose-induced endothelial injury to HUVECs. Conclusion: We investigated the tsRNAs expression profile in diabetic foot ulcers and defined the impairment role of tRF-Gly-CCC-039 in endothelial function in HUVECs. This study may provide novel insights into accelerating diabetic skin wound healing.
RESUMO
Eugenia brejoensis Mazine (Myrtaceae) is source of an essential oil (EbEO) with anti-infective activities against Staphylococcus aureus. This study evaluated the antimicrobial and anti-inflammatory potentials of EbEO in S. aureus-infected skin wounds. The excisional lesions (64 mm2) were induced on Swiss mice back (6 to 8-week-old) that were allocated into 3 groups (n = 12): 1) non-infected wounds (CON); 2) wounds infected with S. aureus ATCC 6538 (Sa); 3) S. aureus-infected wounds and treated with EbEO (Sa + EbEO). The infected groups received approximately 104 CFU/wound. The animals were treated with EbEO (10 µg/wound/day) or vehicle from the 1-day post-infection (dpi) until the 10th dpi. The clinical parameters (wound area, presence of exudate, edema intensity, etc.) were daily analyzed. The levels of inflammatory mediators (cytokines, nitric oxide, VEGF) and bacterial load were measured at the cutaneous tissue at 4th dpi and 10th dpi. Topical application of EbEO accelerated wound contraction with an average contraction of 83.48 ± 11.27 % of the lesion area until 6th dpi. In this period, the rates of lesion contraction were 54.28 ± 5.57% and 34.5 ± 2.67% for CON and Sa groups, respectively. The positive effects of EbEO on wound contraction were associated with significantly (p < 0.05) reduction on bacterial load and the release of inflammatory mediators (IL-6, IL-17A, TNF-α, NO and VEGF). Taken together, these data confirm the antimicrobial potential of EbEO and provide insights into its anti-inflammatory effects, making this essential oil an interesting candidate for the development of new therapeutic alternatives for infected cutaneous wounds.
Assuntos
Queimaduras , Queloide , Queimaduras/patologia , Humanos , Queloide/metabolismo , Pele/patologia , CicatrizaçãoRESUMO
In the skin-healing field, porcine models are regarded as a useful analogue for human skin due to their numerous anatomical and physiological similarities. Despite the widespread use of porcine models in skin healing studies, the initial origin, recruitment and transition of fibroblasts to matrix-secreting contractile myofibroblasts are not well defined for this model. In this review, we discuss the merit of the pig as an animal for studying myofibroblast origin, as well as the challenges associated with assessing their contributions to skin healing. Although a variety of wound types (incisional, partial thickness, full thickness, burns) have been investigated in pigs in attempts to mimic diverse injuries in humans, direct comparison of human healing profiles with regards to myofibroblasts shows evident differences. Following injury in porcine models, which often employ juvenile animals, myofibroblasts are described in the developing granulation tissue at 4 days, peaking at Days 7-14, and persisting at 60 days post-wounding, although variations are evident depending on the specific pig breed. In human wounds, the presence of myofibroblasts is variable and does not correlate with the age of the wound or clinical contraction. Our comparison of porcine myofibroblast-mediated healing processes with those in humans suggests that further validation of the pig model is essential. Moreover, we identify several limitations evident in experimental design that need to be better controlled, and standardisation of methodologies would be beneficial for the comparison and interpretation of results. In particular, we discuss anatomical location of the wounds, their size and depth, as well as the healing microenvironment (wet vs. moist vs. dry) in pigs and how this could influence myofibroblast recruitment. In summary, although a widespread model used in the skin healing field, further research is required to validate pigs as a useful analogue for human healing with regards to myofibroblasts.
Assuntos
Miofibroblastos , Cicatrização , Animais , Modelos Animais de Doenças , Tecido de Granulação , Pele , SuínosRESUMO
BACKGROUND: Current options for the reduction of acne scarring (eg, ablative laser resurfacing) are associated with considerable side effects and limitations in terms of patient population. Percutaneous collagen induction via microneedling poses an alternative treatment method due to its low rates of reported adverse events and side effects. OBJECTIVE: To assess the safety and effectiveness of microneedling treatments in reducing acne scars. METHODS: A total of 22 patients (18 females and 4 males) with a mean age of 38 ± 7.6 years were assessed regarding the appearance of facial acne scarring. Acne scars were assessed via the Acne Scar Assessment Scale (ASAS) and the Goodman and Baron acne scar grading scale before and after two/three treatments. Additionally, the post-interventional development of side reactions, adverse events, and patient-reported outcomes (eg, pain/discomfort, skin redness) was reported. RESULTS: Compared to baseline, the mean ASAS value was improved statistically significantly on average by 1.41 and 1.46 after the second treatment as assessed by the independent raters and the patients, respectively. In patients who received a total of three treatments, a statistically significant mean improvement in ASAS value of 1.35 and 1.66 compared to baseline was assessed by the independent raters and patients, respectively. No unexpected adverse events were reported. The severity and rate of side reactions decreased over the course of this study. CONCLUSION: Microneedling treatments can pose a safe and effective option in the reduction of acne scarring. In this study, microneedling helped achieving a significant reduction of acne scars while showing high patient safety.
Assuntos
Acne Vulgar , Técnicas Cosméticas , Acne Vulgar/complicações , Acne Vulgar/terapia , Adulto , Cicatriz/etiologia , Cicatriz/patologia , Cicatriz/terapia , Técnicas Cosméticas/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Agulhas , Tecnologia , Resultado do TratamentoRESUMO
The synthetic polyhexamethylene guanidine hydrochloride (PHMGH) polymer presents antifungal and antimicrobial activities in vitro. However, in vivo reports regarding its antiseptic and healing activity are scarce in the scientific literature. Thus, the present study aimed to evaluate the antimicrobial and healing effects, as well as toxicological parameters, of a topical solution containing 0.5% PHMGH (Akwaton®) in the treatment of superficial skin wounds experimentally induced on the dorsum of rodents. In addition, non-clinical safety studies were also conducted for use in human health, such as acute oral toxicity and genotoxicity tests. Animals did clinically not present dermatitis. After two days of topical treatment, PHMGH showed a significant antiseptic effect compared to the untreated group, reducing the number of colony-forming units by 72%, reaching 100% on the fourth day of treatment. The animals treated with PHMGH showed a significant area reduction of the skin lesions in relation to the untreated group, indicating a healing effect of the polymer. Moreover, PHMGH treatment led to a significant increase in fibroblasts when compared to the untreated group, revealing its healing action. No significant differences were observed between the biochemical indicators of hepatoxicity and nephrotoxicity, nor genotoxicity between the PHMGH-treated and the negative control groups. The results of acute oral toxicity showed that PHMGH at 5% presents a lethal dose 50% greater than the 2000â¯mg/kg. At a concentration of 5%, PHMGH did not show genotoxicity nor cytotoxicity at doses up to 1500â¯mg/kg through the micronucleus assay in mice. Therefore, 0.5% PHMGH showed an antimicrobial and healing effect, with no toxicity, and could be a promising adjunct in the microbial control of healing wounds.
Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Animais , Antibacterianos , Anti-Infecciosos Locais/toxicidade , Guanidina/toxicidade , Camundongos , CicatrizaçãoRESUMO
Skin wounds are associated with huge economic and emotional burdens for millions of people annually and are a challenge for health workers worldwide. At present, for skin defects after traumatic accidents, especially large-area skin defects, newly developed strategies such as the use of emerging biomaterials and cell therapy could be considered as options besides classic skin grafts. However, the new strategies have to deal with problems such as immune rejection and high costs for patients. An insufficient understanding of the mechanisms of skin wound healing further hinders the development of innovative treatment approaches. In this study, we developed a parathyroid hormone (PTH)-loaded phase-transition microneedle (PTMN) patch to deliver PTH subcutaneously in an efficient manner and change microneedle patch daily to achieve intermittent and systematic drug administration. By evaluating wound closure, re-epithelialization, collagen deposition, and extracellular matrix (ECM) expression in a Sprague-Dawley rat model of traumatic skin wounds, we demonstrated that intermittent systemic administration of PTH using our PTMN patches accelerated skin wound healing. Further, we demonstrated that the use of the patch may accelerate skin wound healing depending on the activation of the transforming growth factor (TGF)-ß/Smad3/mammalian target of rapamycin (mTOR) cascade pathway. Our results suggest that the PTH-loaded PTMN patch may be a novel therapeutic strategy for treating skin wounds.
Assuntos
Colágeno , Hormônio Paratireóideo , Animais , Colágeno/metabolismo , Humanos , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Proteína Smad3 , Serina-Treonina Quinases TOR , CicatrizaçãoRESUMO
In the past decades, adequate and well-planned management of chronic wounds has reached an elevated importance to improve human's quality of life and extend life expectancy. The need for more complex and biomimetic strategies has fueled the exploration of numerous emerging technologies. However, the development of new therapies requires an extensive knowledge of the wound healing process and the key players involved in it. In that sense, this review seeks to bring researchers an updated description of the wound healing process, combining the traditionally-told phase progression with the presence and function of diverse stem cells and other involved mediators. Furthermore, the present work discusses a wide variety of strategies for accelerating wound healing; from systemic or local dressing-free therapies, to cell-free dressings including films, biopolymeric porous scaffolds, electrospun nanofiber meshes and hydrogels. Finally, emerging therapy solutions derived from the development of 3D bioprinting and CRISPR/Cas9 technology or the application of extracellular vesicles in healing chronic wounds are also discussed.
Assuntos
Bioimpressão , Qualidade de Vida , Bandagens , Humanos , Hidrogéis , CicatrizaçãoRESUMO
Skin tissue engineering aims to develop the effective healing strategy to repair the wound by optimizing skin scaffold materials. During the skin wound healing process, fibrin plays an important role due to the specific blood coagulation effect. In this study, the outstanding fibrin capability of konjac glucomannan (KGM) is demonstrated by the molecular dynamics simulation and confirmed by the protein adsorption experiments. A series of konjac glucomannan/polyvinyl alcohol (KGM/PVA) composites with different ratio are fabricated and their role in enhancing the skin repair is tested by in vitro cell culture and in vivo study. The Eads (adsorption energy) between fibrin and KGM is about 30% larger than that between fibrin and PVA. The fibrinogen adsorption rates of PVA and KGM/PVA (5:5) composites can reach about 20% and 60%, respectively. The results show the blood adsorption capacity of KGM/PVA (5:5) composite can reach about 13 g/g. After 7 days of cell culture, the optical density values of 3T3 fibroblasts on KGM/PVA (5:5) composite could reach 0.8. The mechanical properties of the composites are also verified to meet the practical needs. Thus, we propose a potential wound dressing material strategy based on the materials design and the intrinsic properties of KGM.
Assuntos
Bandagens , Fibrinogênio/metabolismo , Mananas/síntese química , Nanofibras/química , Álcool de Polivinil/química , Pele/metabolismo , Cicatrização , Células 3T3 , Adsorção , Animais , Camundongos , Ratos , Ratos Sprague-Dawley , Pele/patologiaRESUMO
Background: Knobloch syndrome (OMIM 267750) is a rare autosomal recessive disorder due to genetic defects in the COL18A1 gene. The triad of high myopia, occipital defect, vitreoretinal degeneration has been described as pathognomonic for this condition. Patients with Knobloch syndrome have also extraocular problems as brain and kidney malformations. High genetic and phenotypic variation has been reported in the affected patients.Materials and Methods: Here we provide detailed clinical description of 3 individuals with Knobloch syndrome. Ocular examination and fundus imaging have been performed. Detailed information about systemic conditions has been provided.Results: Mutations in COL18A1 were identified in all three patients. Patient 1 had congenital hip dislocation and patient 2 had renal atrophy, cardiac insufficiency and difficult skin healing.Conclusions: With this report we add to the clinical and genetic knowledge of this rare condition.