Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell Neurosci ; 131: 103973, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332617

RESUMO

BACKGROUND: Demyelinating diseases, including multiple sclerosis (MS) and spinal cord injury (SCI), lead to significant neurological deficits primarily due to the loss of oligodendrocytes (OLs). Bone Morphogenetic Protein 7 (BMP7) is expressed abundantly in the central nervous system and previous studies showed its protective effect in reducing OL loss. In this study, we aim to explore BMP7's potential as a biomarker and therapeutic target for demyelinating diseases by investigating its expression and effects on OLs and myelin sheath integrity. METHOD: We analyzed multiple Gene Expression Omnibus datasets for BMP7 expression profiles in demyelinating conditions such as MS and SCI. Experimentally, we employed a BMP7 knockdown model in rat spinal cords using adeno-associated virus8 vectors to specifically reduce BMP7 expression. Western blotting, immunofluorescence, and Nissl staining were used to assess the effect on OL and other types of cells. The structure of myelin sheath and locomotor function were evaluated using transmission electron microscopy and BBB scores, and statistical analysis included ROC curves and ANOVA to evaluate BMP7's diagnostic and therapeutic potential. RESULTS: BMP7 expression consistently decreased across various demyelinating models, and BMP7 knockdown led to increased OL apoptosis through the Smad1/5/9 pathway, with no apparent effect on other cell types. This reduction in OLs was associated with myelin degeneration, axonal damage, and impaired motor function. CONCLUSION: The study confirms BMP7's significant involvement in the pathophysiology of demyelinating diseases and supports its potential as a therapeutic target or biomarker. Future research should focus on therapeutic strategies to enhance BMP7 function and further investigate the mechanisms by which BMP7 supports myelin integrity.

2.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
3.
IUBMB Life ; 76(9): 731-744, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38651683

RESUMO

Long noncoding RNAs (LncRNAs) play essential roles in regulating gene expression in various biological processes. However, the function of lncRNAs in vascular smooth muscle cell (VSMC) transformation remains to be explained. In this work, we discover that a new bone marrow protein (BMP) signaling target, lncRNA RP11-301G19.1, is significantly induced in BMP7-treated VSMCs through lncRNA microarray analysis. Addition of BMP signaling inhibitor LDN-193189 attenuates the expression of ACTA2 and SM-22α, as well as the mRNA level of RP11-301G19.1. Furthermore, lncRNA RP11-301G19.1 is critical to the VSMC differentiation and is directly activated by SMAD1/9. Mechanistically, knocking down of RP11-301G19.1 leads to the decrease of ATOH8, another BMP target, while the forced expression of RP11-301G19.1 reactivates ATOH8. In addition, miR-17-5p, a miRNA negatively regulated by BMP-7, contains predicted binding sites for lncRNA RP11-301G19.1 and ATOH8 3'UTR. Accordingly, overexpression of miR-17-5p decreases the levels of them. Together, our results revealed the role of lncRNA RP11-301G19.1 as a miRNA sponge to upregulate ATOH8 in VSMC phenotype transformation.


Assuntos
MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Fenótipo , Diferenciação Celular , Células Cultivadas , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Contração Muscular/efeitos dos fármacos
4.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174679

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFß) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 µM), p38 (SB202190, 10 µM), ERK (U0126, 10 µM) and ER stress (Phenylbutyric acid or PBA, 30 µmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Humanos , Animais , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Retina/metabolismo , Diabetes Mellitus/metabolismo
5.
Stem Cell Reports ; 18(3): 688-705, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36764297

RESUMO

In addition to increasing ß-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Proteínas Smad
6.
Front Oncol ; 13: 1100045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756161

RESUMO

Follistatin-like 1 (FSTL1) is a cancer-related matricellular secretory protein with contradictory organ-specific roles. Its contribution to the pathogenesis of cervical carcinoma is still not clear. Meanwhile, it is necessary to identify novel candidate genes to understand cervical carcinoma's pathogenesis further and find potential therapeutic targets. We collected cervical carcinoma samples and matched adjacent tissues from patients with the locally-advanced disease and used cervical carcinoma cell lines HeLa and C33A to evaluate the effects of FSTL1 on CC cells. The mRNA transcription and protein expression of FSTL1 in cervical carcinoma tumor biopsy tissues were lower than those of matched adjacent tissues. Patients with a lower ratio of FSTL1 mRNA between the tumor and its matched adjacent tissues showed a correlation with the advanced cervical carcinoma FIGO stages. High expression of FSTL1 markedly inhibited the proliferation, motility, and invasion of HeLa and C33A. Regarding mechanism, FSTL1 plays its role by negatively regulating the BMP4/Smad1/5/9 signaling. Our study has demonstrated the tumor suppressor effect of FSTL1, and these findings suggested a potential therapeutic target and biomarker for cervical carcinoma.

7.
Front Cell Neurosci ; 16: 878154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518645

RESUMO

Aquaporin-4 (AQP4) is the predominant water channel in the brain; it is enriched in astrocytic foot processes abutting vessels where it is anchored through an interaction with the dystrophin-associated protein (DAP) complex. Enhanced expression with concomitant mislocalization of AQP4 along astrocyte plasma membranes is a hallmark of several neurological conditions. Thus, there is an urgent need to identify which signaling pathways dictate AQP4 microdistribution. Here we show that canonical bone morphogenetic proteins (BMPs), particularly BMP2 and 4, upregulate AQP4 expression in astrocytes and dysregulate the associated DAP complex by differentially affecting its individual members. We further demonstrate the presence of BMP receptors and Smad1/5/9 pathway activation in BMP treated astrocytes. Our analysis of adult mouse brain reveals BMP2 and 4 in neurons and in a subclass of endothelial cells and activated Smad1/5/9 in astrocytes. We conclude that the canonical BMP-signaling pathway might be responsible for regulating the expression of AQP4 and of DAP complex proteins that govern the subcellular compartmentation of this aquaporin.

8.
Clin Exp Pharmacol Physiol ; 49(10): 1050-1058, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639082

RESUMO

Zingerone is a non-volatile compound found mainly in dried ginger. Zingerone increases the expression of osteogenic markers and has antioxidant effects. A previous study showed that zingerone accelerated osteoblast differentiation by suppressing the expression of Smad7, a member of the inhibitory Smad (I-Smad) family. However, it is not known if zingerone can induce osteoblast differentiation by regulating Smad1/5/9, a member of the receptor-regulated Smad (R-Smad) family. In addition, osteoblast differentiation induced by Smad1/5/9 mediated increases in the expression of heme oxygenase 1 (HO-1) has not been reported. This study investigated the effects of zingerone on osteoblast differentiation and confirmed the relationship between Smad1/5/9 and HO-1. Zingerone increased the expression of osteogenic genes including runt-related transcription factor 2 (Runx2), distal-less homeobox (Dlx5) and osteocalcin (OC) and also promoted Smad1/5/9 phosphorylation. Interestingly, HO-1 expression was also elevated by zingerone, and an inhibitor of HO-1 (Sn[IV] protoporphyrin IX dichloride [SnPP]) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes such as Dlx5, Runx2 and OC. Protein phosphatase 2A Cα (PP2A Cα, an inhibitor of Smad1/5/9) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes. The zingerone-induced increase in HO-1 luciferase activity was suppressed by PP2A Cα. Taken together; our data demonstrate that zingerone promotes osteoblast differentiation by increasing Smad1/5/9 mediated HO-1 expression.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteoblastos , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Guaiacol/análogos & derivados , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos , Osteocalcina , Osteogênese , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Smad1/metabolismo , Fatores de Transcrição/metabolismo
9.
Biochem Pharmacol ; 199: 114986, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276216

RESUMO

BACKGROUND: Recent studies have demonstrated the beneficial effects of STS in treating pulmonary hypertension by inhibiting the pulmonary vascular remodeling and suppressing the abnormally elevated proliferation and migration of PASMCs. However, the roles of STS on pulmonary vascular endothelium remain largely known. METHODS: In this study, we investigated the effects and mechanisms of STS on pulmonary vascular endothelial dysfunction by using a chronic hypoxia-induced pulmonary hypertension (HPH) rat model, as well as in primarily cultured rat PMVECs and human ESC-ECs cell models. RESULTS: Firstly, a 21-day treatment of STS significantly prevents the disease development of HPH by normalizing the right ventricular systolic pressure and right ventricular hypertrophy, improving the cardiac output. Then, STS treatment markedly inhibits the hypoxia-induced medial wall thickening of the distal intrapulmonary arteries. Notably, STS significantly inhibits the hypoxia-induced apoptosis in both the pulmonary endothelium of HPH rats and primarily cultured PMVECs, through the stabilization of BMPR2 protein and protection of the diminished BMP9-BMPR2-Smad1/5/9 signaling pathway. In mechanism, STS treatment retrieves the hypoxic downregulation of BMPR2 by stabilizing the BMPR2 protein, inhibiting the BMPR2 protein degradation via lysosome system, and promoting the plasma membrane localization of BMPR2, all of which together reinforcing the BMP9-induced signaling transduction in both PMVECs and human ESC-ECs. However, these effects are absent in hESC-ECs expressing heterozygous dysfunctional BMPR2 protein (BMPR2+/R899X). CONCLUSION: STS may exert anti-apoptotic roles, at least partially, via induction of the BMP9-BMPR2-Smad1/5/9 signaling transduction in pulmonary endothelium and PMVECs.


Assuntos
Células-Tronco Embrionárias Humanas , Hipertensão Pulmonar , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Fenantrenos , Artéria Pulmonar , Ratos , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo
10.
Metabolism ; 127: 154960, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954251

RESUMO

BACKGROUND: Lipoprotein (a) [Lp(a)] is a causal risk factor for cardiovascular diseases, while its role in vascular calcification has not been well-established. Here, we investigated an association of Lp(a) with vascular calcification using population-based and in vitro study designs. METHODS: A total of 2806 patients who received coronary computed tomography were enrolled to assess the correlation of Lp(a) with the severity of coronary artery calcification (CAC). Human aortic smooth muscle cells (HASMCs) were used to explore mechanisms of Lp(a)-induced vascular calcification. RESULTS: In the population study, Lp(a) was independently correlated with the presence and severity of CAC (all p < 0.05). In vitro study showed that cell calcific depositions and alkaline phosphatase (ALP) activity were increased and the expression of pro-calcific proteins, including bone morphogenetic protein-2 (BMP2) and osteopontin (OPN), were up-regulated by Lp(a) stimulation. Interestingly, Lp(a) activated Notch1 signaling, resulting in cell calcification, which was inhibited by the Notch1 signaling inhibitor, DAPT. Lp(a)-induced Notch1 activation up-regulated BMP2-Smad1/5/9 pathway. In contrast, Noggin, an inhibitor of BMP2-Smad1/5/9 pathway, significantly blocked Lp(a)-induced HASMC calcification. Notch1 activation also induced translocation of nuclear factor-κB (NF-κB) accompanied by OPN overexpression and elevated inflammatory cytokines production, while NF-κB silencing alleviated Lp(a)-induced vascular calcification. CONCLUSIONS: Elevated Lp(a) concentrations are independently associated with the presence and severity of CAC and the impact of Lp(a) on vascular calcification is involved in the activation of Notch1-NF-κB and Notch1-BMP2-Smad1/5/9 pathways, thus implicating Lp(a) as a potential novel therapeutic target for vascular calcification.


Assuntos
Lipoproteína(a)/sangue , Calcificação Vascular/sangue , Adulto , Idoso , Proteína Morfogenética Óssea 2/sangue , Estudos de Casos e Controles , Células Cultivadas , China/epidemiologia , Feminino , Humanos , Lipoproteína(a)/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteopontina/sangue , Gravidade do Paciente , Receptor Notch1/sangue , Calcificação Vascular/epidemiologia , Calcificação Vascular/patologia
11.
J Chem Neuroanat ; 113: 101941, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711423

RESUMO

Smad proteins are known to transduce the actions of the transforming growth factor-ß (TGF-ß) family including TGF-ßs, activins, and bone morphogenetic proteins (BMPs). We previously reported that Smad1/5/9 immunoreactivity was observed in astrocytes of various rat brain regions including the hippocampus, suggesting that Smad1/5/9 may be associated with the physiology of astrocytes. However, the Smad1/5/9 expression and activation in the hippocampal astrocytes after global cerebral ischemia has not been yet elucidated. In this study, we examined temporal changes in the expression and phosphorylation of Smad1/5/9 in the hippocampus using a rat model of global cerebral ischemia. Furthermore, we examined the candidate ligand involved in the phosphorylation of Smad1/5/9 in the hippocampus after ischemia. Pyramidal neuronal cell death in the CA1 regions was visible at 3 days, and maximum death occurred within 7 days after ischemia. At 7 days after ischemia, astrocytes that showed strong immunoreactivity for Smad1/5/9 were frequently observed in the CA1 region. Additionally, there was an increase in phosphorylated Smad1/5/9 (phospho-Smad1/5/9) -immunopositive astrocytes in the CA1 region 7 days after ischemia. Real-time PCR analysis showed an increase in the expression level of TGF-ß1 mRNA in the hippocampus after ischemia. Intracerebroventricular injection of SB525334, an inhibitor of TGF-ß/Smad signaling, reduced immunoreactivity for phospho-Smad1/5/9 in astrocytes. These results suggest that TGF-ß1 may be a key molecule for ischemia-induced Smad1/5/9 phosphorylation in astrocytes, and TGF-ß1-Smad1/5/9 signaling may play a role in post-ischemic events, including brain inflammation or tissue repair rather than neuroprotection of the hippocampus.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Masculino , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
12.
Br J Pharmacol ; 178(1): 203-216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080042

RESUMO

BACKGROUND AND PURPOSE: Pulmonary hypertension related to pulmonary fibrosis is classed as WHO Group III, one of the most common groups which lacks effective treatment options. In this study, we aimed to uncover the underlying mechanisms, particularly the involvement of the BMP9/BMPR2/SMAD signalling pathway, in this subtype of pulmonary hypertension. EXPERIMENTAL APPROACH: Male Sprague Dawley rats were used to establish a model of pulmonary hypertension with pulmonary fibrosis, induced by bleomycin. Haemodynamic and lung functions were measured, along with histological and immunohistochemical examinations. Primary cultures of rat pulmonary microvascular endothelial cells (PMVECs) were analysed with western blots, apoptosis assays and immunohistochemistry. KEY RESULTS: Early (7 days) after bleomycin treatment of rats, pulmonary arterial thickening and severe loss of pulmonary arterial endothelium were observed, followed (14 days) by increased right ventricular systolic pressure and right ventricular hypertrophy. Marked down-regulation of the BMP9/BMPR2/SMAD signalling pathway was markedly down-regulated in lung tissues from bleomycin-treated rats (throughout the 7- to 35-day treatment period) and bleomycin-treated rat PMVECs, along with excessive cell apoptosis and loss of pulmonary arterial endothelium. Treatment with recombinant human bone morphogenetic protein 9 (rhBMP9) attenuated these aspects of bleomycin-induced pulmonary hypertension, by restoring disrupted BMP9/BMPR2/SMAD signalling. CONCLUSION AND IMPLICATIONS: In bleomycin-treated rats, early and persisting suppression of the BMP9/BMPR2/SMAD signalling pathway triggered severe loss of pulmonary arterial endothelium and subsequent pulmonary arterial vascular remodelling, contributing to the development of pulmonary hypertension. Therapeutic approaches reinforcing BMP9/BMPR2/SMAD signalling might be ideal strategies for this subtype of pulmonary hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Células Endoteliais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Artéria Pulmonar , Fibrose Pulmonar/induzido quimicamente , Ratos , Ratos Sprague-Dawley
13.
Clin Exp Pharmacol Physiol ; 48(4): 515-523, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33300218

RESUMO

Chrysophanol (Chrysophanic acid; CA) is a natural anthraquinone found in Senna tora and rhubarb that has various characteristic features, including the ability to suppress adipogenesis. However, its effects on osteoblast differentiation have not been investigated. Herein, this study aimed to demonstrate the mechanism by which CA induces the osteoblast differentiation. CA increased the expression of osteogenic genes. The staining levels Alkaline phosphatase (ALP) and Alizarin Red S (ARS) were increased by chrysophanol. CA induced osteoblast differentiation through AMP-activated protein kinase (AMPK)/Small mothers against decapentaplegic (Smad1/5/9) activation in MC3T3-E1 cells. In addition, compound C, AMPK inhibitor (Comp. C)-induced cells suppressed osteogenic genes expression and AMPK/Smad1/5/9 activation. Interestingly, AMPK in the CA-induced AMPK/Smad1/5/9 signalling pathway was an upstream regulator of Smad1/5/9. In order to further dissect in bone development, we used a zebrafish model to investigate the effect of CA on bone development. These results suggest that CA stimulated bone development via AMPK/Smad1/5/9. Overall, our results demonstrate that CA promotes osteoblast differentiation via AMPK/Smad1/5/9 expression in vitro and in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Osteoblastos/efeitos dos fármacos , Osteogênese , Fosforilação , Peixe-Zebra
14.
Am J Transl Res ; 12(9): 5640-5654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042445

RESUMO

Clinical evidence suggests that doxorubicin (DOX), as a chemotherapeutic drug, can induce severe bone damage in cancer patients. However, the effect of DOX on osteoporosis has not been fully elucidated. Therefore our study aims to investigate the effect and mechanism of DOX in osteoporosis. In our study, we co-cultured rat BMSCs with different concentrations of DOX solution, then the osteogenic differentiation markers and proliferation ability were analyzed. The results indicated that a certain concentration of the DOX solution may restrain the osteogenic differentiation of rat BMSCs by bmp-2/smads signalling pathway. Also, we found DOX promoted the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation. Our research explains excellently the induce-osteoporotic mechanism of DOX in vitro, which maybe contributing to the exploration of a new way to prevent osteoporosis caused by chemotherapy.

15.
Biochem Biophys Res Commun ; 469(3): 418-23, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26687945

RESUMO

Cardiac cell apoptosis provoked by excessive sodium nitroprusside (SNP) toxicity, a potent vasodilator, limited its clinical application. Effective means for protection against SNP-induced cardiotoxicity would be highly needed. This study investigated the effects of Follistatin-like 1 (FSTL1) on the injury induced by SNP in rat cardiomyoblast H9c2 cells. First, expression of FSTL is attenuated following SNP treatment. SNP challenge significantly increases cardiac cell death, which is attenuated by FSTL1 pretreatment. Additionally, knockdown of endogenous FSTL1 enhances SNP-induced cell apoptosis. Furthermore, FSTL1 pretreatment partially inhibits SNP-induced NO generation. LY294002 and BMP4 completely abolish cytoprotective role of FSTL1 against SNP challenge, indicating both activation of Akt and inhibition of BMP/Smad1/5/9 signaling are involved in this cellular process. Lastly, FSTL1-mediated cytoprotection is independent of Smad2/3 signaling, as SB525334 fails to remove its protective role. Taken together, these results indicated that FSTL1 protects the SNP-induced injury in cardiac H9c2 cells through, at least in part, the activation of Akt and inhibition of Smad1/5/9 signaling.


Assuntos
Proteínas Relacionadas à Folistatina/metabolismo , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Nitroprussiato/administração & dosagem , Proteína Oncogênica v-akt/metabolismo , Proteínas Smad Reguladas por Receptor/metabolismo , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Mioblastos Cardíacos/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Vasodilatadores/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA