Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Exp Neurol ; 382: 114971, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326819

RESUMO

This article explores the important functions of transfer RNA and - transfer RNA derived small RNAs (tsRNAs) in cellular processes and disease pathogenesis, with a particular emphasis on their involvement in cerebrovascular disorders. It discusses the biogenesis and structure of tsRNAs, including types such as tRNA halves and tRNA-derived fragments, and their functional significance in gene regulation, stress response, and cell signaling pathways. The importance of tsRNAs in neurodegenerative diseases, cancer, and cardiovascular diseases has already been highlighted, while their role in cerebrovascular diseases is in early phase of exploration. This paper presents the latest advancements in the field of tsRNAs in cerebrovascular conditions, such as ischemic stroke, intracerebral hemorrhage, and moyamoya disease. Furthermore, revealing the aptitude of tsRNAs as biomarkers for the prediction of cerebrovascular diseases and as targets for therapeutic intervention. It provides insights into the role of tsRNAs in these conditions and proposes directions for future research.

2.
Discov Oncol ; 15(1): 500, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331172

RESUMO

Small molecular RNAs, including microRNA (miRNA) and small interfering RNA (siRNA), participate in the regulation of gene expression. As powerful regulators, miRNAs, take part in posttranscriptional regulation of gene expression and play important roles in the diagnosis and treatment of cancer. Meanwhile, siRNA can induce sequence-specific gene silencing, thus being able to inhibit tumorigenesis by suppressing the expression of their targeted proto-oncogenes. Small RNAs (including naked miRNAs and siRNAs) are easily degraded by circulating RNAase, which can be retarded through the package of nanoparticles. Therefore, nanoparticles help tumor therapy by regulating targeted genes of small RNAs. Here, we reviewed the effects of small RNAs on gene expression; the advantages, disadvantages, and targeted modification of nanoparticles as carriers transporting small RNAs; and the application of nanocarriers delivering small RNA for cancer-targeted therapy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39312032

RESUMO

PURPOSE: To investigate small RNA profiles in sperm, identify stable miRNA patterns unique to sperm, and assess the behavior of consistently expressed miRNAs in sperm from subfertile men compared to fertile controls. METHODS: The small RNA profiles of single sperm from four proven fertile men were analyzed using Small RNA next-generation sequencing (NGS). Subsequently, a specific set of miRNAs was validated using RT-qPCR on additional sperm samples from 65 subfertile men from an infertility clinic and 30 proven fertile men. RESULTS: Small RNA sequencing revealed a diverse range of sperm small RNA biotypes, including miRNAs. The mapped read percentage ranged from 22.19% for single sperm to 83.29% for enriched sperm samples used at different RNA concentrations. In single sperm, a smaller proportion of sequences were attributed to piRNAs (2.79%), miRNA (0.94%), tRNA (0.82%), and rRNA (0.47%) compared to enriched sperm samples, where piRNA (41.68%), tRNA (20.31%), miRNA (11.11%), and rRNA (6.54%) were observed. Distinct detection rates and a higher number of detected miRNAs were noted with enriched sperm samples compared to single sperm obtained using either a micromanipulator or microdissection systems. Among the identified miRNAs, 110 were consistently present in all samples. RT-qPCR revealed 15 miRNAs with increased expression and 5 miRNAs with decreased expression in sperm samples from subfertile men compared to proven fertile men. These differentially validated miRNAs were significantly correlated, either positively or negatively, with sperm count, motility, and morphology. CONCLUSION: The study extensively examines small RNAs in single sperm, identifying sperm-specific miRNAs that could serve as molecular markers to distinguish between subfertile and fertile men in clinical settings.

4.
mBio ; : e0235924, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287442

RESUMO

RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.

5.
Genes Dev ; 38(13-14): 597-613, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39111824

RESUMO

Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.


Assuntos
MicroRNAs , Estabilidade de RNA , MicroRNAs/metabolismo , MicroRNAs/genética , Estabilidade de RNA/genética , Animais , Humanos , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Regulação da Expressão Gênica
6.
Front Microbiol ; 15: 1401985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101033

RESUMO

Advances in small RNAs (sRNAs)-related studies have posed a challenge for NGS-related bioinformatics, especially regarding the correct mapping of sRNAs. Depending on the algorithms and scoring matrices on which they are based, aligners are influenced by the characteristics of the dataset and the reference genome. These influences have been studied mainly in eukaryotes and to some extent in prokaryotes. However, in bacteria, the selection of aligners depending on sRNA-seq data associated with outer membrane vesicles (OMVs) and the features of the corresponding bacterial reference genome has not yet been investigated. We selected five aligners: BBmap, Bowtie2, BWA, Minimap2 and Segemehl, known for their generally good performance, to test them in mapping OMV-associated sRNAs from Aliivibrio fischeri to the bacterial reference genome. Significant differences in the performance of the five aligners were observed, resulting in differential recognition of OMV-associated sRNA biotypes in A. fischeri. Our results suggest that aligner(s) should not be arbitrarily selected for this task, which is often done, as this can be detrimental to the biological interpretation of NGS analysis results. Since each aligner has specific advantages and disadvantages, these need to be considered depending on the characteristics of the input OMV sRNAs dataset and the corresponding bacterial reference genome to improve the detection of existing, biologically important OMV sRNAs. Until we learn more about these dependencies, we recommend using at least two, preferably three, aligners that have good metrics for the given dataset/bacterial reference genome. The overlapping results should be considered trustworthy, yet their differences should not be dismissed lightly, but treated carefully in order not to overlook any biologically important OMV sRNA. This can be achieved by applying the intersect-then-combine approach. For the mapping of OMV-associated sRNAs of A. fischeri to the reference genome organized into two circular chromosomes and one circular plasmid, containing copies of sequences with rRNA- and tRNA-related features and no copies of sequences with protein-encoding features, if the aligners are used with their default parameters, we advise avoiding Segemehl, and recommend using the intersect-then-combine approach with BBmap, BWA and Minimap2 to improve the potential for discovery of biologically important OMV-associated sRNAs.

7.
J Cell Sci ; 137(16)2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39212120

RESUMO

The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: germline micronuclei (MICs) and a somatic macronucleus (MAC). During sex, the MIC genome is reorganized into a new MAC genome and the old MAC is lost. Almost 45,000 unique internal eliminated sequences (IESs) distributed throughout the genome require precise excision to guarantee a functional new MAC genome. Here, we characterize a pair of paralogous PHD finger proteins involved in DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in the new developing MACs, where IES excision occurs. Upon DevPF2 knockdown (KD), long IESs are preferentially retained and late-expressed small RNAs decrease; no length preference for retained IESs was observed in DevPF1-KD and development-specific small RNAs were abolished. The expression of at least two genes from the new MAC with roles in genome reorganization seems to be influenced by DevPF1- and DevPF2-KD. Thus, both PHD fingers are crucial for new MAC genome development, with distinct functions, potentially via regulation of non-coding and coding transcription in the MICs and new MACs.


Assuntos
Edição de Genes , Paramecium tetraurellia , Proteínas de Protozoários , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Genoma de Protozoário , Micronúcleo Germinativo/metabolismo , Micronúcleo Germinativo/genética , Meiose/genética
8.
Antioxidants (Basel) ; 13(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39199264

RESUMO

Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. However, it is unclear how these stressors can affect changes in the expression levels of tsRNAs and their related endonucleases in the male reproductive organs. We found that Ribonuclease inhibitor 1 (RNH1), an oxidation responder, interacts with ANG to regulate sperm tsRNA generation in the mouse caput epididymis. On the other hand, inflammation and oxidative stress induced by either lipopolysaccharide (LPS) or palmitate (PA) treatments weakened the RNH1-ANG interaction in the epididymal epithelial cells (EEC). Accordingly, ANG translocation increased from the nucleus to the cytoplasm, which led to ANG upregulation and increases in cytoplasmic tsRNA expression levels. In conclusion, as an antioxidant, RNH1 regulates tsRNA generation through targeting ANG in the mouse caput epididymis. Moreover, the tsRNA is an epigenetic factor in sperm that modulates paternal inheritance in offspring via the fertilization process.

9.
Emerg Microbes Infect ; 13(1): 2396872, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39193622

RESUMO

The type VI secretion system (T6SS) is essential for Gram-negative bacteria to antagonize a wide variety of prokaryotic and eukaryotic competitors and thus gain survival advantages. Two sets of T6SS have been found in Vibrio fluvialis, namely VflT6SS1 and VflT6SS2, among which VflT6SS2 is functionally expressed. The CqsA/LuxS-HapR quorum sensing (QS) system with CAI-1 and AI-2 as signal molecules can regulate VflT6SS2 by regulators LuxO and HapR, with LuxO repressing while HapR activating VflT6SS2. Quorum regulatory small RNAs (Qrr sRNAs) are Hfq-dependent trans-encoded sRNAs that control Vibrio quorum sensing. In V. fluvialis, Qrr sRNAs have not been characterized and their regulatory function is unknown. In this study, we first identified four Qrr sRNAs in V. fluvialis and demonstrated that these Qrr sRNAs are regulated by LuxO and involved in the modulation of VflT6SS2 function. On the one hand, Qrr sRNAs act on HapR, the activator of both the major and the auxiliary clusters of VflT6SS2, and then indirectly repress VflT6SS2. On the other hand, they directly repress VflT6SS2 by acting on tssB2 and tssD2_a, the first gene of the major cluster and the highly transcriptional one among the two units of the first auxiliary cluster, respectively. Our results give insights into the role of Qrr sRNAs in CAI-1/AI-2 based QS and VflT6SS2 modulation in V. fluvialis and further enhance understandings of the network between QS and T6SS regulation in Vibrio species.

10.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026751

RESUMO

The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb;" however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA, and the uncharacterized small RNA, "sabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB", have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii.

11.
Physiol Mol Biol Plants ; 30(6): 945-956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974357

RESUMO

Camellia oleifera is a crucial cash crop in the southern region of China. Timely flowering is a crucial characteristic for maximizing crop productivity. Nevertheless, the cold temperature and wet weather throughout the fall and winter seasons in South China impact the timing of flowering and the yield produced by C. oleifera. This study examined the miRNAs, transcriptomes, and phytohormones that are part of the flowering time regulatory networks in distinct varieties of C. oleifera (Sep, Oct, and Nov). This study provides evidence that phytohormones significantly impact the timing of flowering in C. oleifera leaves. There is a positive correlation between the accumulation variations of zeatin (cZ), brassinolide (BL), salicylic acid (SA), 1-amino cyclopropane carboxylic acid (ACC), and jasmonic acid (JA) and flowering time. This means that blooming occurs earlier when the quantity of these substances in leaves increases. Abscisic acid (ABA), trans-zeatin-riboside (tZR), dihydrozeatin (dh-Z), and IP (N6-Isopentenyladenine) exhibit contrasting effects. Furthermore, both miR156 and miR172 play a crucial function in regulating flowering time in C. oleifera leaves by modulating the expression of SOC1, primarily through the miR156-SPL and miR172-AP2 pathways. These findings establish a strong basis for future research endeavors focused on examining the molecular network associated with the flowering period of C. oleifera and controlling flowering time management through external treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01473-2.

12.
Carcinogenesis ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023209

RESUMO

Since gastric cancer shows no apparent signs in its early stages, most patients are diagnosed later with a poor prognosis. We therefore seek more sensitive and specific GC biomarkers. Small RNAs formed from tRNAs represent a novel class of non-coding RNAs that are highly abundant in bodily fluids and essential to biological metabolism. This study explores the potential of i-tRF-AsnGTT in gastric cancer diagnostics. To begin with, we sequenced i-tRF-AsnGTT using high-throughput methods. i-tRF-AsnGTT expression levels in GC were determined using real-time fluorescence PCR. Agarose gel electrophoresis, Sanger sequencing, and repeated freezing and thawing were performed to verify molecular properties. A correlation was found between clinical and pathological parameters and i-tRF-AsnGTT expression levels through the χ² test, and ROC was used to analyze its diagnostic value in GC. In serum, i-tRF-AsnGTT has a low and stable expression level. It can differentiate between patients with gastric cancer and gastritis and healthy donors with better diagnostic efficacy. In combination with clinicopathological parameters, i-tRF-AsnGTT correlates with tumor differentiation, infiltration depth of tumors, TNM stage, lymph node metastases, and neural/vascular invasion. Serum i-tRF-AsnGTT expression is low in GC patients. Serum from postoperative patients shows increased i-tRF-AsnGTT expression levels. Potentially, this could be used as a biomarker to help diagnose gastric cancer and monitor its prognosis.

13.
Liver Int ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037259

RESUMO

BACKGROUND: Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive. METHODS: To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis. RESULTS: A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming. CONCLUSION: The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.

14.
Plant Cell Environ ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049759

RESUMO

Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.

15.
J Cell Mol Med ; 28(12): e18483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39051629

RESUMO

The development of high-throughput technologies has enhanced our understanding of small non-coding RNAs (sncRNAs) and their crucial roles in various diseases, including atrial fibrillation (AF). This study aimed to systematically delineate sncRNA profiles in AF patients. PANDORA-sequencing was used to examine the sncRNA profiles of atrial appendage tissues from AF and non-AF patients. Differentially expressed sncRNAs were identified using the R package DEGseq 2 with a fold change >2 and p < 0.05. The target genes of the differentially expressed sncRNAs were predicted using MiRanda and RNAhybrid. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. In AF patients, the most abundant sncRNAs were ribosomal RNA-derived small RNAs (rsRNAs), followed by transfer RNA-derived small RNAs (tsRNAs), and microRNAs (miRNAs). Compared with non-AF patients, 656 rsRNAs, 45 miRNAs, 191 tsRNAs and 51 small nucleolar RNAs (snoRNAs) were differentially expressed in AF patients, whereas no significantly differentially expressed piwi-interacting RNAs were identified. Two out of three tsRNAs were confirmed to be upregulated in AF patients by quantitative reverse transcriptase polymerase chain reaction, and higher plasma levels of tsRNA 5006c-LysCTT were associated with a 2.55-fold increased risk of all-cause death in AF patients (hazard ratio: 2.55; 95% confidence interval, 1.56-4.17; p < 0.001). Combined with our previous transcriptome sequencing results, 32 miRNA, 31 snoRNA, 110 nucleus-encoded tsRNA, and 33 mitochondria-encoded tsRNA target genes were dysregulated in AF patients. GO and KEGG analyses revealed enrichment of differentially expressed sncRNA target genes in AF-related pathways, including the 'calcium signaling pathway' and 'adrenergic signaling in cardiomyocytes.' The dysregulated sncRNA profiles in AF patients suggest their potential regulatory roles in AF pathogenesis. Further research is needed to investigate the specific mechanisms of sncRNAs in the development of AF and to explore potential biomarkers for AF treatment and prognosis.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido , Humanos , Fibrilação Atrial/genética , Pequeno RNA não Traduzido/genética , Apêndice Atrial/metabolismo , Masculino , Feminino , MicroRNAs/genética , Ontologia Genética , Idoso , Pessoa de Meia-Idade , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Regulação da Expressão Gênica , Transcriptoma/genética , Biologia Computacional/métodos , Prognóstico
16.
J Extracell Biol ; 3(6): e161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947174

RESUMO

Flavobacterium psychrophilum (Fp) causes Bacterial Cold Water Disease in salmonids. During host-pathogen interactions, gram-negative bacteria, such as Fp, release external membrane vesicles (OMVs) harbouring cargos, such as DNA, RNA and virulence factors. This study aimed to characterise the potential role of the OMVs' small RNAs (sRNAs) in the Fp-rainbow trout host-pathogen interactions. sRNAs carried within OMVs were isolated from Fp. RNA-Seq datasets from whole-cell Fp and their isolated OMVs indicated substantial enrichment of specific sRNAs in the OMVs compared to the parent cell. Many of the OMV-packaged sRNAs were located in the pathogenicity islands of Fp. Conservation of sRNAs in 65 strains with variable degrees of virulence was reported. Dual RNA-Seq of host and pathogen transcriptomes on day 5 post-infection of Fp -resistant and -susceptible rainbow trout genetic lines revealed correlated expression of OMV-packaged sRNAs and their predicted host's immune gene targets. In vitro, treatment of the rainbow trout epithelial cell line RTgill-W1 with OMVs showed signs of cytotoxicity accompanied by dynamic changes in the expression of host genes when profiled 24 h following treatment. The OMV-treated cells, similar to the Fp -resistant fish, showed downregulated expression of the suppressor of cytokine signalling 1 (SOCS1) gene, suggesting induction of phagosomal maturation. Other signs of modulating the host gene expression following OMV-treatment include favouring elements from the phagocytic, endocytic and antigen presentation pathways in addition to HSP70, HSP90 and cochaperone proteins, which provide evidence for a potential role of OMVs in boosting the host immune response. In conclusion, the study identified novel microbial targets and inherent characteristics of OMVs that could open up new avenues of treatment and prevention of fish infections.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167277, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38871033

RESUMO

HIF-1 activation is protective in acute kidney injury (AKI), but its underlying mechanism is not fully understood. Stress-induced tRNA derived small RNAs play an emerging role in cellular processes. This study investigated the role of HIF-1 associated tiRNA-Lys-CTT-003 (tiR-Lys) in an AKI mouse model. Our sequencing results showed that ischemia can promote the production of renal tiR-Lys by activating HIF-1α. FG-4592, a HIF-1 inducer, can also upregulate the expression of tiR-Lys in renal tubular cells. Both overexpression of tiR-Lys and FG-4592 pre-treatment could improve mitochondrial damage and lipid peroxidation with alleviated renal function and morphological damage in cisplatin-induced AKI mice. While the anti-ferroptosis effect of FG-4592 were largely eliminated by tiR-Lys inhibitor. Notably, tiR-Lys directly alleviated cell death and MDA accumulation induced by the ferroptosis inducer Erastin, accompanied with restored expression of GPX4. RNA-Pulldown and RIP-qPCR results revealed that tiR-Lys can interact with the RNA-binding protein GRSF1.tiR-lys overexpression can preserve protein expression of GRSF1 decreased by cisplatin. Inhibiting Grsf1 via shRNA eliminated the upregulation of GPX4 by tiR-Lys. In conclusion, our study demonstrates that HIF-1α-induced tiR-Lys is protective in cisplatin-induced AKI, primarily by upregulating the level of GPX4 through interaction with GRSF1, thereby inhibiting ferroptosis in renal tubular epithelial cells.


Assuntos
Injúria Renal Aguda , Cisplatino , Modelos Animais de Doenças , Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Túbulos Renais , Animais , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Ferroptose/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Camundongos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos
18.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826453

RESUMO

C. elegans are exposed to a variety of pathogenic and non-pathogenic bacteria species in their natural environment. Correspondingly, C. elegans has evolved an ability to discern between nutritive and infectious bacterial food sources. Here we show that C. elegans can learn to avoid the pathogenic bacteria Pseudomonas fluorescens 15 (PF15), and that this learned avoidance behavior is passed on to progeny for four generations, as we previously demonstrated for Pseudomonas aeruginosa (PA14) and Pseudomonas vranovensis, using similar mechanisms, including the involvement of both the TGF-ß ligand DAF-7 and Cer1 retrotransposon-encoded virus-like particles. PF15 small RNAs are both necessary and sufficient to induce this transgenerational avoidance behavior. Unlike PA14 or P. vranovensis, PF15 does not use P11, Pv1, or a small RNA with maco-1 homology for this avoidance; instead, an unrelated PF15 small RNA, Pfs1, that targets the C. elegans vab-1 Ephrin receptor gene is necessary and sufficient for learned avoidance, suggesting the evolution of yet another bacterial sRNA/C. elegans gene target pair involved in transgenerational inheritance of pathogen avoidance. As VAB-2 Ephrin receptor ligand and MACO-1 knockdown also induce PF15 avoidance, we have begun to understand the genetic pathway involved in small RNA targeted pathogenic avoidance. Moreover, these data show that axon guidance pathway genes (VAB-1 and VAB-2) have previously unknown adult roles in regulating neuronal function. C. elegans may have evolved multiple bacterial specificity-encoded small RNA-dependent mechanisms to avoid different pathogenic bacteria species, thereby providing progeny with a survival advantage in a dynamic environment.

19.
Front Genet ; 15: 1296533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919951

RESUMO

Small RNAs (sRNAs) are important non-coding RNA regulators that play key roles in the development and pathogenesis of plant pathogens, as well as in other biological processes. However, whether these abundant and varying sRNAs are involved in Phytophthora development or infection remains enigmatic. In this study, sRNA sequencing of 4 asexual stages of Phytophthora capsici (P. capsici), namely, as mycelia (HY), sporangia (SP), zoospores (ZO), cysts (CY), and pepper infected with P. capsici (IN), were performed, followed by sRNA analysis, microRNA (miRNA) identification, and miRNA target prediction. sRNAs were mainly distributed at 25-26 nt in HY, SP, and ZO but distributed at 18-34 nt in CY and IN. 92, 42, 176, 39, and 148 known miRNAs and 15, 19, 54, 13, and 1 novel miRNA were identified in HY, SP, ZO, CY, and IN, respectively. It was found that the expression profiles of known miRNAs vary greatly at different stages and could be divided into 4 categories. Novel miRNAs mostly belong to part I. Gene ontology (GO) analysis of known miRNA-targeting genes showed that they are involved in the catalytic activity pathway, binding function, and other biological processes. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis of novel miRNA-targeting genes showed that they are involved in the lysine degradation pathway. The expression of candidate miRNAs was validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and miRNAs were downregulated in PcDCL1 or PcAGO1 mutants. To further explore the function of the detected miRNAs, the precursor of a novel miRNA, miR91, was knockout by CRISPR-Cas9, the mutants displayed decreased mycelial growth, sporangia production, and zoospore production. It was found that 503142 (Inositol polyphosphate 5-phosphatase and related proteins) can be predicted as a target of miR91, and the interaction between miR91 and 503142 was verified using the tobacco transient expression system. Overall, our results indicate that the diverse and differentially expressed sRNAs are involved in the development and pathogenesis of P. capsici.

20.
IUBMB Life ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923653

RESUMO

To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA