Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 503, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174972

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motoneuron degeneration, and effective clinical treatments are lacking. In this study, we evaluated whether intranasal delivery of mesenchymal stem cell-derived small extracellular vesicles (sEVs) is a strategy for ALS therapy using SOD1G93A mice. In vivo tracing showed that intranasally-delivered sEVs entered the central nervous system and were extensively taken up by spinal neurons and some microglia. SOD1G93A mice that intranasally received sEV administration showed significant improvements in motor performances and survival time. After sEV administration, pathological changes, including spinal motoneuron death and synaptic denervation, axon demyelination, neuromuscular junction degeneration and electrophysiological defects, and mitochondrial vacuolization were remarkably alleviated. sEV administration attenuated the elevation of proinflammatory cytokines and glial responses. Proteomics and transcriptomics analysis revealed upregulation of the complement and coagulation cascade and NF-ĸB signaling pathway in SOD1G93A mouse spinal cords, which was significantly inhibited by sEV administration. The changes were further confirmed by detecting C1q and NF-ĸB expression using Western blots. In conclusion, intranasal administration of sEVs effectively delays the progression of ALS by inhibiting neuroinflammation and overactivation of the complement and coagulation cascades and NF-ĸB signaling pathway and is a potential option for ALS therapy.


Assuntos
Administração Intranasal , Esclerose Lateral Amiotrófica , Vesículas Extracelulares , Camundongos Transgênicos , NF-kappa B , Transdução de Sinais , Animais , Esclerose Lateral Amiotrófica/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , NF-kappa B/metabolismo , Modelos Animais de Doenças , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Células-Tronco Mesenquimais/metabolismo , Coagulação Sanguínea
2.
Life Sci ; 355: 122987, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151884

RESUMO

Small extracellular vesicles (sEV) are endogenous lipid-bound membrane vesicles secreted by both prokaryotic and eukaryotic cells into the extracellular environment, performs several biological functions such as cell-cell communication, transfer of proteins, mRNA, and ncRNA to target cells in distant sites. Due to their role in molecular pathogenesis and its potential to deliver biological cargo to target cells, it has become a prominent area of interest in recent research in the field of Neuroscience. However, their role in neurological disorders, like neurodegenerative diseases is more complex and still unaddressed. Thus, this review focuses on the role of sEV in neurodegenerative and neurodevelopmental diseases, including their biogenesis, classification, and pathogenesis, with translational advantages and limitations in the area of neurobiology.

3.
Adv Mater ; : e2408255, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120049

RESUMO

Modulating the inflammatory microenvironment to reconstruct the fibrocartilaginous layer while promoting tendon repair is crucial for enhancing tendon-to-bone healing in rotator cuff repair (RCR), a persistent challenge in orthopedics. Small extracellular vesicles (sEVs) hold significant potential to modulate inflammation, yet the efficient production of highly bioactive sEVs remains a substantial barrier to their clinical application. Moreover, achieving minimally invasive local delivery of sEVs to the tendon-to-bone interface presents significant technical difficulties. Herein, the circadian rhythm of adipose-derived stem cells is modulated to increase the yield and enhance the inflammatory regulatory capacity of sEVs. Circadian rhythm-regulated sEVs (CR-sEVs) enhance the cyclic adenosine monophosphate signaling pathway in macrophage (Mφ) via platelet factor 4 delivery, thereby inhibiting Mφ M1 polarization. Subsequently, a triphasic microneedle (MN) scaffold with a tip, stem, and base is designed for the local delivery of CR-sEVs (CR-sEVs/MN) at the tendon-to-bone junction, incorporating tendon-derived decellularized extracellular matrix in the base to facilitate tendon repair. CR-sEVs/MN mitigates inflammation, promotes fibrocartilage regeneration, and enhances tendon healing, thereby improving biomechanical strength and shoulder joint function in a rat RCR model. Combining CR-sEVs with this triphasic microneedle delivery system presents a promising strategy for enhancing tendon-to-bone healing in clinical settings.

4.
Mol Brain ; 17(1): 57, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148092

RESUMO

Discovery of novel post-translational modifications provides new insights into changes in protein function, localization, and stability. They are also key elements in understanding disease mechanisms and developing therapeutic strategies. We have previously reported that ubiquitin-like 3 (UBL3) serves as a novel post-translational modifier that is highly expressed in the cerebral cortex and hippocampus, in addition to various other organs, and that 60% of proteins contained in small extracellular vesicles (sEVs), including exosomes, are influenced by UBL3. In this study, we generated transgenic mice expressing biotinylated UBL3 in the forebrain under control of the alpha-CaMKII promoter (Ubl3Tg/+). Western blot analysis revealed that the expression of UBL3 in the cerebral cortex and hippocampus was 6- to 7-fold higher than that in the cerebellum. Therefore, we performed immunoprecipitation of protein extracts from the cerebral cortex of Ubl3+/+ and Ubl3Tg/+ mice using avidin beads to comprehensively discover UBL3 interacting proteins, identifying 35 new UBL3 interacting proteins. Nine proteins were annotated as extracellular exosomes. Gene Ontology (GO) analysis suggested a new relationship between sEVs and RNA metabolism in neurodegenerative diseases. We confirmed the association of endogenous UBL3 with the RNA-binding proteins FUS and HPRT1-both listed in the Neurodegenerative Diseases Variation Database (NDDVD)-and with LYPLA1, which is involved in Huntington's disease, using immunoprecipitation (IP)-western blotting analysis. These UBL3 interacting proteins will accelerate the continued elucidation of sEV research about proteins regulated by novel post-translational modifications by UBL3 in the brain.


Assuntos
Encéfalo , Camundongos Transgênicos , Ubiquitinas , Animais , Encéfalo/metabolismo , Ubiquitinas/metabolismo , Ligação Proteica , Ontologia Genética , Camundongos , Camundongos Endogâmicos C57BL , Córtex Cerebral/metabolismo , Exossomos/metabolismo
5.
Cell Oncol (Dordr) ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162991

RESUMO

BACKGROUND: Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT. METHODS: Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO2-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC. RESULTS: A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity. CONCLUSIONS: Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.

6.
J Extracell Vesicles ; 13(8): e12486, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104279

RESUMO

Epithelial ovarian cancer (EOC) is an often-fatal malignancy marked by the development of resistance to platinum-based chemotherapy. Thus, accurate prediction of platinum drug efficacy is crucial for strategically selecting postoperative interventions to mitigate the risks associated with suboptimal therapeutic outcomes and adverse effects. Tissue-derived extracellular vesicles (tsEVs), in contrast to their plasma counterparts, have emerged as a powerful tool for examining distinctive attributes of EOC tissues. In this study, 4D data-independent acquisition (DIA) proteomic sequencing was performed on tsEVs obtained from 58 platinum-sensitive and 30 platinum-resistant patients with EOC. The analysis revealed a notable enrichment of differentially expressed proteins that were predominantly associated with immune-related pathways. Moreover, pivotal immune-related proteins (IRPs) were identified by LASSO regression. These factors, combined with clinical parameters selected through univariate logistic regression, were used for the construction of a model employing multivariate logistic regression. This model integrated three tsEV IRPs, CCR1, IGHV_35 and CD72, with one clinical parameter, the presence of postoperative residual lesions. Thus, this model could predict the efficacy of initial platinum-based chemotherapy in patients with EOC post-surgery, providing prognostic insights even before the initiation of chemotherapy.


Assuntos
Carcinoma Epitelial do Ovário , Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Vesículas Extracelulares/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Idoso , Resistencia a Medicamentos Antineoplásicos , Platina/uso terapêutico , Platina/farmacologia , Adulto , Proteômica/métodos , Prognóstico , Biomarcadores Tumorais/metabolismo
7.
J Extracell Vesicles ; 13(8): e12482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105261

RESUMO

It is known that small extracellular vesicles (sEVs) are released from cancer cells and contribute to cancer progression via crosstalk with recipient cells. We have previously reported that sEVs expressing the αVß3 integrin, a protein upregulated in aggressive neuroendocrine prostate cancer (NEPrCa), contribute to neuroendocrine differentiation (NED) in recipient cells. Here, we examine the impact of αVß3 expression on sEV protein content, density and function. sEVs used in this study were isolated by iodixanol density gradients and characterized by nanoparticle tracking analysis, immunoblotting and single vesicle analysis. Our proteomic profile of sEVs containing αVß3 shows downregulation of typical effectors involved in apoptosis and necrosis and an upregulation of tumour cell survival factors compared to control sEVs. We also show that the expression of αVß3 in sEVs causes a distinct reposition of EV markers (Alix, CD81, CD9) to a low-density sEV subpopulation. This low-density reposition is independent of extracellular matrix (ECM) protein interactions with sEVs. This sEV subset contains αVß3 and an αVß3 downstream effector, NgR2, a novel marker for NEPrCa. We show that sEVs containing αVß3 are loaded with higher amounts of NgR2 as compared to sEVs that do not express αVß3. Mechanistically, we demonstrate that sEVs containing NgR2 do not affect the sEV marker profile, but when injected in vivo intratumorally, they promote tumour growth and induce NED. We show that sEVs expressing NgR2 increase the activation of focal adhesion kinase (FAK), a known promoter of cancer cell proliferation, in recipient cells. We also show that NgR2 mimics the effect of sEVs containing αVß3 since it displays increased growth of NgR2 transfectants in vivo, as compared to control cells. Overall, our results describe the changes that occur in cargo, density and functions of cancer cell-derived sEVs containing the αVß3 integrin and its effector, NgR2, without affecting the sEV tetraspanin profiles.


Assuntos
Vesículas Extracelulares , Integrina alfaVbeta3 , Neoplasias da Próstata , Masculino , Integrina alfaVbeta3/metabolismo , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Vesículas Extracelulares/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Carcinogênese/metabolismo
8.
J Extracell Biol ; 3(6): e152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947170

RESUMO

Cardiac fibrosis is the hallmark of cardiovascular disease (CVD), which is leading cause of death worldwide. Previously, we have shown that interleukin-10 (IL10) reduces pressure overload (PO)-induced cardiac fibrosis by inhibiting the recruitment of bone marrow fibroblast progenitor cells (FPCs) to the heart. However, the precise mechanism of FPC involvement in cardiac fibrosis remains unclear. Recently, exosomes and small extracellular vesicles (sEVs) have been linked to CVD progression. Thus, we hypothesized that pro-fibrotic miRNAs enriched in sEV-derived from IL10 KO FPCs promote cardiac fibrosis in pressure-overloaded myocardium. Small EVs were isolated from FPCs cultured media and characterized as per MISEV-2018 guidelines. Small EV's miRNA profiling was performed using Qiagen fibrosis-associated miRNA profiler kit. For functional analysis, sEVs were injected in the heart following TAC surgery. Interestingly, TGFß-treated IL10-KO-FPCs sEV increased profibrotic genes expression in cardiac fibroblasts. The exosomal miRNA profiling identified miR-21a-5p as the key player, and its inhibition with antagomir prevented profibrotic signalling and fibrosis. At mechanistic level, miR-21a-5p binds and stabilizes ITGAV (integrin av) mRNA. Finally, miR-21a-5p-silenced in sEV reduced PO-induced cardiac fibrosis and improved cardiac function. Our study elucidates the mechanism by which inflammatory FPC-derived sEV exacerbate cardiac fibrosis through the miR-21a-5p/ITGAV/Col1α signalling pathway, suggesting miR-21a-5p as a potential therapeutic target for treating hypertrophic cardiac remodelling and heart failure.

9.
Cancer Cell Int ; 24(1): 229, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951882

RESUMO

Small extracellular vesicles (sEVs) are cell-derived, nanometer-sized particles enclosed by a lipid bilayer. All kinds of biological molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively loaded into sEVs and transmitted to recipient cells that are near and distant. Growing shreds of evidence show the significant biological function and the clinical significance of sEVs in cancers. Numerous recent studies have validated that sEVs play an important role in tumor progression and can be utilized to diagnose, stage, grading, and monitor early tumors. In addition, sEVs have also served as drug delivery nanocarriers and cancer vaccines. Although it is still infancy, the field of basic and translational research based on sEVs has grown rapidly. In this review, we summarize the latest research on sEVs in gliomas, including their role in the malignant biological function of gliomas, and the potential of sEVs in non-invasive diagnostic and therapeutic approaches, i.e., as nanocarriers for drug or gene delivery and cancer vaccines.

10.
Sci Rep ; 14(1): 16635, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025906

RESUMO

The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/ß-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.


Assuntos
Vesículas Extracelulares , Fígado , Camundongos Knockout , MicroRNAs , Hipófise , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Hipófise/metabolismo , Camundongos , Fígado/metabolismo , Proliferação de Células , Hepatócitos/metabolismo , Via de Sinalização Wnt , Masculino , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Regeneração Hepática/genética , Tetracloreto de Carbono/toxicidade
11.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000104

RESUMO

Cataracts and glaucoma account for a high percentage of vision loss and blindness worldwide. Small extracellular vesicles (sEVs) are released into different body fluids, including the eye's aqueous humor. Information about their proteome content and characterization in ocular pathologies is not yet well established. In this study, aqueous humor sEVs from healthy individuals, cataracts, and glaucoma patients were studied, and their specific protein profiles were characterized. Moreover, the potential of identified proteins as diagnostic glaucoma biomarkers was evaluated. The protein content of sEVs from patients' aqueous humor with cataracts and glaucoma compared to healthy individuals was analyzed by quantitative proteomics. Validation was performed by western blot (WB) and ELISA. A total of 828 peptides and 192 proteins were identified and quantified. After data analysis with the R program, 8 significantly dysregulated proteins from aqueous humor sEVs in cataracts and 16 in glaucoma showed an expression ratio ≥ 1.5. By WB and ELISA using directly aqueous humor samples, the dysregulation of 9 proteins was mostly confirmed. Importantly, GAS6 and SPP1 showed high diagnostic ability of glaucoma, which in combination allowed for discriminating glaucoma patients from control individuals with an area under the curve of 76.1% and a sensitivity of 65.6% and a specificity of 87.7%.


Assuntos
Humor Aquoso , Biomarcadores , Catarata , Vesículas Extracelulares , Glaucoma , Peptídeos e Proteínas de Sinalização Intercelular , Osteopontina , Proteômica , Humanos , Humor Aquoso/metabolismo , Humor Aquoso/química , Glaucoma/metabolismo , Glaucoma/diagnóstico , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Proteômica/métodos , Feminino , Masculino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/análise , Idoso , Osteopontina/metabolismo , Pessoa de Meia-Idade , Catarata/metabolismo , Catarata/diagnóstico , Proteoma/análise , Proteoma/metabolismo , Ensaio de Imunoadsorção Enzimática
12.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000460

RESUMO

Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson's disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.


Assuntos
Glutationa Transferase , Estresse Oxidativo , Ubiquitinas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Regulação para Cima , Transporte Proteico , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica
13.
Adv Cancer Res ; 161: 119-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39032949

RESUMO

Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Vesículas Extracelulares/metabolismo , Masculino , Biomarcadores Tumorais/metabolismo , Animais , Microambiente Tumoral
14.
Int Immunopharmacol ; 139: 112667, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39018690

RESUMO

Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) provide a pragmatic solution as a cell-free therapy for patients with diabetic kidney disease (DKD). However, the underlying protective mechanisms of MSC-sEV remain largely unknown in DKD. Invivo and in vitro analyses demonstrated that MSC-sEV attenuated renal fibrosis and inflammation of DKD. The underlying mechanism of the MSC-sEV-induced therapeutic effect was explored by high-throughput sequencing, which identified the unique enrichment of a set of miRNAs in MSC-sEV compared with human skin fibroblasts-sEV (HSF-sEV). Vitro experiments demonstrated that the protective potential was primarily attributed to miR-23a-3p, one of the most abundant miRNAs in MSC-sEV. Further, overexpression or knockdown analyses revealed that miR-23a-3p, and its target Krüppel-like factor 3 (KLF3) suppressed the STAT3 signaling pathway in high glucose (HG) induced HK-2 cells were essential for the renal-protective property of MSC-sEV. Moreover, we found that miR-23a-3p was packaged into MSC-sEV by RNA Binding Motif Protein X-Linked (RBMX) and transmitted to HG-induced HK-2 cells. Finally, inhibiting miR-23a-3p could mitigate the protective effects of MSC-sEV in db/db mice. These findings suggest that a systemic administration of sEV derived from MSC, have the capacity to incorporate into kidney where they can exert renal-protective potential against HG-induced injury through delivery of miR-23a-3p.


Assuntos
Nefropatias Diabéticas , Vesículas Extracelulares , Fibrose , Fatores de Transcrição Kruppel-Like , Células-Tronco Mesenquimais , MicroRNAs , Fator de Transcrição STAT3 , MicroRNAs/genética , MicroRNAs/metabolismo , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Masculino , Transdução de Sinais , Linhagem Celular , Camundongos Endogâmicos C57BL , Rim/patologia , Rim/metabolismo , Inflamação
15.
Biochem Biophys Res Commun ; 727: 150336, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959731

RESUMO

Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.


Assuntos
Vesículas Extracelulares , Fibrose , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose/genética , Animais , Miocárdio/patologia , Miocárdio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Biomarcadores/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
16.
N Biotechnol ; 83: 101-109, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079597

RESUMO

Engineering of extracellular vesicles (EVs) towards more efficient targeting and uptake to specific cells has large potentials for their application as therapeutics. Carbohydrates play key roles in various biological interactions and are essential for EV biology. The extent to which glycan modification of EVs can be achieved through genetic glycoengineering of their parental cells has not been explored yet. Here we introduce targeted glycan modification of EVs through cell-based glycoengineering via modification of various enzymes in the glycosylation machinery. In a "simple cell" strategy, we modified major glycosylation pathways by knocking-out (KO) essential genes for N-glycosylation (MGAT1), O-GalNAc glycosylation (C1GALT1C1), glycosphingolipids (B4GALT5/6), glycosaminoglycans (B4GALT7) and sialylation (GNE) involved in the elongation or biosynthesis of the glycans in HEK293F cells. The gene editing led to corresponding glycan changes on the cells as demonstrated by differential lectin staining. Small EVs (sEVs) isolated from the cells showed overall corresponding glycan changes, but also some unexpected differences to their parental cell including enrichment preference for certain glycan structures and absence of other glycan types. The genetic glycoengineering did not significantly impact sEVs production, size distribution, or syntenin-1 biomarker expression, while a clonal influence on sEVs production yields was observed. Our findings demonstrate the successful implementation of sEVs glycoengineering via genetic modification of the parental cell and a stable source for generation of glycoengineered sEVs. The utilization of glycoengineered sEVs offers a promising opportunity to study the role of glycosylation in EV biology, as well as to facilitate the optimization of sEVs for therapeutic purposes.

17.
Cancers (Basel) ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39061201

RESUMO

(Background). Canine mammary tumors (CMTs) have emerged as an important model for understanding pathophysiological aspects of human disease. Liquid biopsy (LB), which relies on blood-borne biomarkers and offers minimal invasiveness, holds promise for reflecting the disease status of patients. Small extracellular vesicles (SEVs) and their protein cargo have recently gained attention as potential tools for disease screening and monitoring. (Objectives). This study aimed to isolate SEVs from canine patients and analyze their proteomic profile to assess their diagnostic and prognostic potential. (Methods). Plasma samples were collected from female dogs grouped into CMT (malignant and benign), healthy controls, relapse, and remission groups. SEVs were isolated and characterized using ultracentrifugation (UC), nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Proteomic analysis of circulating SEVs was conducted using liquid chromatography-mass spectrometry (LC-MS). (Results). While no significant differences were observed in the concentration and size of exosomes among the studied groups, proteomic profiling revealed important variations. Mass spectrometry identified exclusive proteins that could serve as potential biomarkers for mammary cancer. These included Inter-alpha-trypsin inhibitor heavy chain (ITIH2 and ITI4), phosphopyruvate hydratase or alpha enolase (ENO1), eukaryotic translation elongation factor 2 (eEF2), actin (ACTB), transthyretin (TTR), beta-2-glycoprotein 1 (APOH) and gelsolin (GSN) found in female dogs with malignant tumors. Additionally, vitamin D-binding protein (VDBP), also known as group-specific component (GC), was identified as a protein present during remission. (Conclusions). The results underscore the potential of proteins found in SEVs as valuable biomarkers in CMTs. Despite the lack of differences in vesicle concentration and size between the groups, the analysis of protein content revealed promising markers with potential applications in CMT diagnosis and monitoring. These findings suggest a novel approach in the development of more precise and effective diagnostic tools for this challenging clinical condition.

18.
Biomolecules ; 14(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39062452

RESUMO

Evidence suggests that immune system dysfunction and macrophages are involved in the disease establishment and progression of endometriosis. Among the factors involved in this alteration in macrophage activity, Small Extracellular Vesicles (sEVs) have been described to play a role favoring the switch to a specific phenotype with controversial results. This study aims to investigate the potential effect of circulating sEVs in the plasma of well-characterized patients with endometriosis on the polarization of macrophages. sEVs were isolated from the plasma of patients diagnosed with endometriosis confirmed by histopathological analysis. Two groups of patients were recruited: the endometriosis group consisted of patients diagnosed with endometriosis by imaging testing (gynecological ultrasonography and/or magnetic resonance imaging), confirmed by histopathologic study (n = 12), and the control group included patients who underwent laparoscopy for tubal sterilization without presurgical suspicion of endometriosis and without endometriosis or signs of any inflammatory pelvic condition during surgery (n = 12). Human THP1 monocytic cells were differentiated into macrophages, and the effect of sEVs on cell uptake and macrophage polarization was evaluated by fluorescent labeling and measurement of the IL1B, TNF, ARG1, and MRC1 expression, respectively. Although no changes in cell uptake were detected, sEVs from endometriosis induced a polarization of macrophages toward an M2 phenotype, characterized by lower IL1B and TNF expression and a tendency to increase MRC1 and ARG1 levels. When macrophages were stimulated with lipopolysaccharides, less activation was also detected after treatment with endometriosis sEVs. Finally, endometriosis sEVs also induced the expression of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARG); however, treatment with rosiglitazone, a PPARG agonist, had no effect on the change in macrophage phenotype. We conclude that circulating sEVs in women with endometriosis have a certain capacity to shift the activation state of macrophages toward an M2 phenotype, but this does not modify the uptake level or the response to PPARG ligands.


Assuntos
Endometriose , Vesículas Extracelulares , Macrófagos , Fenótipo , Humanos , Endometriose/patologia , Endometriose/metabolismo , Endometriose/sangue , Feminino , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Adulto , Células THP-1
19.
Cell Rep ; 43(7): 114491, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39002127

RESUMO

Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.


Assuntos
Vesículas Extracelulares , Insulina , MicroRNAs , Animais , Humanos , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Insulina/metabolismo , Resistência à Insulina , MicroRNAs/metabolismo , MicroRNAs/genética , Obesidade/metabolismo , Obesidade/genética , Fosforilação , Transdução de Sinais
20.
BMC Med ; 22(1): 254, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902659

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-ß and tau pathologies, and their correlation with AD progression. METHODS: A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1ß, and GFAP antibodies. AD-specific markers, amyloid-ß (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS: Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-ß (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-ß (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1ß, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS: Elevated PsEVs, upregulated amyloid-ß (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Doença de Alzheimer/patologia , Vesículas Extracelulares/metabolismo , Masculino , Idoso , Feminino , Estudos de Casos e Controles , Peptídeos beta-Amiloides/metabolismo , Idoso de 80 Anos ou mais , Doenças Neuroinflamatórias , Biomarcadores/sangue , Sinapses/patologia , Disfunção Cognitiva , Pessoa de Meia-Idade , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA