Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 15(1): 185, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891618

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. Anterior cerebral arteries (ACAs) from a total of 19 brain donor participants from controls and pathologically diagnosed AD groups (early-Braak stages I-II; intermediate-Braak stages III-IV; and advanced-Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate and advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameters of the ACAs remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 µm and 32.8 ± 9.24 µm in width for the intermediate and advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Doença de Alzheimer/patologia , Artéria Cerebral Anterior/metabolismo , Artéria Cerebral Anterior/patologia , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Colágeno/metabolismo
2.
Res Sq ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693508

RESUMO

Alzheimer disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. A total of 28 brain donor participants with human anterior cerebral artery (ACA) from controls and pathologically diagnosed AD groups (early - Braak stages I-II; intermediate - Braak stages III-IV; and advanced - Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate& advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameter of ACA remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 µm and 32.8 ± 9.24 µm in width for the intermediate& advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA