Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Sci Total Environ ; : 174875, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029753

RESUMO

The massive extraction of virgin raw materials has substantially intensified the focus on circular economy of building materials. As a Cradle-to-Cradle service life and circular approach for lime-based construction materials (LBCM) is lacking, the present study evaluates the environmental impact and feasibility of creating a fully recycled second-life render (SL) by designing a closed-loop upcycling process for first-life renders (FL). To achieve this, a second-life binder was thermally activated (900, 1000, 1100, 1200 °C), while its microstructure, compressive strength, and thermal conductivity were investigated. SL had up to 33 % open porosity (FL 29 %), its compressive strength ranged from 2.5 to 3.4 MPa (FL 4.4 MPa) and the thermal conductivity from 1.002 to 1.107 W/mK (FL 1.231 W/mK). Resistance of SL and FL against sulfate attack was found to be equivalent, measured based on the recent RILEM TC 271-ASC recommendation. The environmental impact indicators integrating material properties and durability confirm that the second life-render can reduce CO2 emissions up to 55 %. The present research provides insights into unlocking essential sustainability gains through circular practices in the life-cycle of LBCM.

2.
Cancer Cell Int ; 24(1): 250, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020410

RESUMO

BACKGROUND: Pien Tze Huang (PZH), a traditional Chinese medicine formulation, is recognized for its therapeutic effect on colitis and colorectal cancer. However, its protective role and underlying mechanism in colitis-associated colorectal cancer (CAC) remain to be elucidated. METHODS: A CAC mouse model was established using AOM/DSS. Twenty mice were randomly divided into four groups (n = 5/group): Control, PZH, AOM/DSS, and AOM/DSS + PZH groups. Mice in the PZH and AOM/DSS + PZH group were orally administered PZH (250 mg/kg/d) from the first day of experiment, while the control and AOM/DSS group received an equivalent volume of distilled water. Parameters such as body weight, disease activity index (DAI), colon weight, colon length, colon histomorphology, intestinal tumor formation, serum concentrations of pro-inflammatory cytokines, proliferation and apoptosis in colon tissue were assessed. RNA sequencing was employed to identify the differentially expressed transcripts (DETs) in colonic tissues and related signaling pathways. Wnt/ß-Catenin Pathway-Related genes in colon tissue were detected by QPCR and immunohistochemistry (IHC). RESULTS: PZH significantly attenuated AOM/DSS-induced weight loss, DAI elevation, colonic weight gain, colon shortening, histological damage, and intestinal tumor formation in mice. PZH also notably decreased serum concentration of IL-6, IL-1ß, and TNF-α. Furthermore, PZH inhibited cell proliferation and promote apoptosis in tumor tissues. RNA-seq and KEGG analysis revealed key pathways influenced by PZH, including Wnt/ß-catenin signaling pathway. IHC staining confirmed that PZH suppressed the expression of ß-catenin, cyclin D1 and c-Myc in colonic tissues. CONCLUSIONS: PZH ameliorates AOM/DSS-induced CAC in mice by suppressing the activation of Wnt/ß-catenin signaling pathway.

3.
Mucosal Immunol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838816

RESUMO

The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.

4.
Mar Drugs ; 22(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786622

RESUMO

Five new sulfated arylpyrrole and arylpyrrolone alkaloids, denigrins H-L (1-5), along with two known compounds, dictyodendrin B and denigrin G, were isolated from an extract of a New Zealand Dictyodendrilla c.f. dendyi marine sponge. Denigrins H-L represent the first examples of sulfated denigrins, with denigrins H and I (1-2), as derivatives of denigrin D, containing a pyrrolone core, and denigrins J-L (3-5), as derivatives of denigrin E (6), containing a pyrrole core. Their structures were elucidated by interpretation of 1D and 2D NMR spectroscopic data, ESI, and HR-ESI-MS spectrometric data, as well as comparison with literature data. Compounds 1-5, along with six known compounds previously isolated from the same extract, showed minimal cytotoxicity against the HeLa cervical cancer cell line.


Assuntos
Alcaloides , Poríferos , Pirróis , Animais , Poríferos/química , Humanos , Nova Zelândia , Pirróis/farmacologia , Pirróis/química , Pirróis/isolamento & purificação , Células HeLa , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Sulfatos/química , Sulfatos/farmacologia , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação
5.
Mar Biotechnol (NY) ; 26(3): 511-525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748059

RESUMO

Bicarbonate and sulfate are among two primary ion constituents of saline-alkaline water, with excessive levels potentially causing metabolic disorders in crustaceans, affecting their molting and interrupting development. As an economically important crustacean species, the molecular adaptive mechanism of giant freshwater prawn Macrobrachium rosenbergii in response to the stress of bicarbonate and sulfate remains unexplored. To investigate the mechanism underlying NaHCO3, Na2SO4, and mixed NaHCO3, Na2SO4 stresses, M. rosenbergii larvae were exposed to the above three stress conditions, followed by total RNA extraction and high-throughput sequencing at eight distinct time points (0, 4, 8, 12, 24, 48, 72, and 96 h). Subsequent analysis revealed 13, 16, and 13 consistently identified differentially expressed genes (DEGs) across eight time points under three stress conditions. These consistently identified DEGs were significantly involved in the Gene Ontology (GO) terms of chitin-based cuticle development, protein-carbohydrate complex, structural constituent of cuticle, carnitine biosynthetic process, extracellular matrix, and polysaccharide catabolic process, indicating that alkaline stresses might potentially impact the energy metabolism, growth, and molting of M. rosenbergii larvae. Particularly, the transcriptome data revealed that DEGs associated with energy metabolism, immunity, and amino acid metabolism were enriched across multiple time points under three stress conditions. These DEGs are linked to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including glycolysis/glucogenesis, amino sugar and nucleotide sugar metabolism, and lysine degradation. Consistent enrichment findings across the three stress conditions support conclusions above. Together, these insights are instrumental in enhancing our understanding of the molecular mechanisms underlying the alkaline response in M. rosenbergii larvae. Additionally, they offer valuable perspectives on the regulatory mechanisms of freshwater crustaceans amid saline-alkaline water development.


Assuntos
Perfilação da Expressão Gênica , Larva , Palaemonidae , Transcriptoma , Animais , Palaemonidae/genética , Palaemonidae/metabolismo , Palaemonidae/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Larva/efeitos dos fármacos , Estresse Fisiológico/genética , Sulfatos/metabolismo , Muda/genética , Muda/efeitos dos fármacos , Bicarbonatos/metabolismo , Água Doce
6.
Materials (Basel) ; 17(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612111

RESUMO

Upcycling Cr-containing sulfate waste into catalysts for CO2 hydrogenation reaction benefits both pollution mitigation and economic sustainability. In this study, FeCrO3/Fe2O3 catalysts were successfully prepared by a simple hydrothermal method using Cr-containing sodium sulfate (Cr-SS) as a Cr source for efficient conversion and stable treatment of Cr. The removal rate of Cr in Cr-SS can reach 99.9% at the optimized hydrothermal conditions. When the synthesized catalysts were activated and used for the CO2 hydrogenation reaction, a 50% increase in CO2 conversion was achieved compared with the catalyst prepared by impregnation with a comparable amount of Cr. According to the extraction and risk assessment code (RAC) of the Reference Office of the European Community Bureau (BCR), the synthesized FeCrO3/Fe2O3 is risk-free. This work not only realizes the detoxification of the Cr-SS but transfers Cr into stable FeCrO3 for application in a catalytic field, which provides a strategy for the harmless disposal and resource utilization of Cr-containing hazardous waste.

7.
Indian J Microbiol ; 64(1): 100-109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468747

RESUMO

The objective of this study was to investigate the effect of bovine milk derived exosomes (MDEs) on the gut microbiota of Dextran sodium sulfate (DSS)-induced colitis mice. Total of 42 specific pathogen free (SPF) male BALB/c mice (3 weeks old) were randomly assigned to three groups including control group, DSS group (DSS) and bovine milk derived exosome group (Exo), with 7 replicates/cages per treatment and two mice in one cage. 16S rRNA gene sequencing of cecal digesta samples was conducted. DSS significantly decreased the average daily feed intake of mice in DSS and Exo groups (P = 0.03). Shannon index of the DSS group was significantly lower than the control group (P < 0.05) whereas no difference between the control group and Exo group was observed. Administration of MDEs tended to increase the relative abundance of Campylobaterota. Compared to the control group, the relative abundance of Roseburia was significantly decreased in the DSS group (P < 0.05) whereas no difference between the Exo group and control group was observed. MDEs also tended to increase the relative abundance of Lachnospiraceae_UCG_006. In conclusion, oral administration of 10 µL MDEs (1 mg/mL) positively affected gut microbiota of DSS-induced colitis mice. The results of this study provided valuable reference for MDEs application in the prevention and treatment of colitis.

8.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474305

RESUMO

Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.


Assuntos
Colite , Neoplasias Colorretais , Animais , Humanos , Camundongos , Azoximetano/efeitos adversos , Carcinogênese , Transformação Celular Neoplásica , Colite/patologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fuso Acromático/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Front Immunol ; 15: 1295863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500875

RESUMO

Colorectal cancer (CRC) is a complex and heterogeneous disease characterized by dysregulated interactions between tumor cells and the immune system. The tumor microenvironment plays a pivotal role in cancer initiation as well as progression, with myeloid immune cells such as dendritic cell and macrophage subsets playing diverse roles in cancer immunity. On one hand, they exert anti-tumor effects, but they can also contribute to tumor growth. The AOM/DSS colitis-associated cancer mouse model has emerged as a valuable tool to investigate inflammation-driven CRC. To understand the role of different leukocyte populations in tumor development, the preparation of single cell suspensions from tumors has become standard procedure for many types of cancer in recent years. However, in the case of AOM/DSS-induced colorectal tumors, this is still challenging and rarely described. For one, to be able to properly distinguish tumor-associated immune cells, separate processing of cancerous and surrounding colon tissue is essential. In addition, cell yield, due to the low tumor mass, viability, as well as preservation of cell surface epitopes are important for successful flow cytometric profiling of tumor-infiltrating leukocytes. Here we present a fast, simple, and economical step-by-step protocol for isolating colorectal tumor-associated leukocytes from AOM/DSS-treated mice. Furthermore, we demonstrate the feasibility of this protocol for high-dimensional flow cytometric identification of the different tumor-infiltrating leukocyte populations, with a specific focus on myeloid cell subsets.


Assuntos
Neoplasias Colorretais , Animais , Camundongos , Azoximetano/efeitos adversos , Modelos Animais de Doenças , Citometria de Fluxo , Leucócitos/metabolismo , Microambiente Tumoral
10.
Heliyon ; 10(5): e27266, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449618

RESUMO

Atenolol (ATL) is a beta-blocker pharmaceutical product which is excreted mainly unchanged and may represent a long-term risk for organisms present in the sea and in fresh water. Due to its low biodegradation rate, electrochemical advanced oxidation processes (EAOPs) can be used to remove this compound. In this work, ATL ecotoxicity was analyzed in the presence of sodium sulfate (Na2SO4), which is widely used as supporting electrolyte in EAOPs. Ecotoxicity values were expressed as the pollutant concentration that leads to a 50% inhibition of the root elongation of Lactuca sativa seeds in relation to the control (EC50(5 days)). The obtained values for ATL showed an EC50(5 days) of 1377 mg L-1 towards Lactuca sativa. When Na2SO4 was added, the toxicity of the sample increased but no synergy was detected between both compounds. With 2 g L-1 Na2SO4, ATL showed an EC50(5 days) of 972 mg L-1; and with 4 g L-1 Na2SO4 and higher concentrations, EC50 value for ATL was 0 mg L-1. Statistical tools were used to obtain the zones of the [ATL]-[Na2SO4] plane which are toxic towards Lactuca sativa. Solutions containing ATL and Na2SO4 were treated by electrooxidation. Two anode materials (a boron-doped diamond electrode and a microporous Sb-doped SnO2 ceramic one); three operation currents (0.4, 0.6 and 1 A); and two reactor configurations (one-compartment reactor and two-compartment reactor separated by a cation exchange membrane) were used. Lactuca sativa seeds and Vibrio fischeri bacterium tests were employed to evaluate the toxicity of the solutions before and after applying the electrooxidation process. In all the tests, the ecotoxicity of the treated sample increased. This fact is owing to the persulfate presence in the solution due to the sulfate electrochemical oxidation. Nevertheless, none of the final samples were toxic towards Vibrio fischeri because ecotoxicity values were lower than 10 TU; and, in the case of the one-compartment reactor, practically all of them were also non-toxic towards Lactuca sativa. The toxicity of the treated samples increased when using the two-compartment reactor in the presence of the BDD anode, and when the operation current was increased. This is attributed to the highest formation of persulfates. Amongst all the tests performed in this work, the lowest toxicity value (i.e., 3 TU) together with the complete mineralization and degradation degrees was achieved with the two-compartment reactor using the BDD anode and operating at 0.6 A.

11.
Animals (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396543

RESUMO

In order to investigate the potential mechanisms of probiotic-fermented coconut water in treating enteritis, this study conducted a comprehensive analysis of the effects of probiotic intervention on the recovery from Dextran Sodium Sulfate-induced acute enteritis in Wenchang chicks. The analysis encompassed the assessment of growth performance, serum indicators, intestinal tissue structure, and metagenomic and metabolomic profiles of cecal contents in 60 Wenchang chicks subjected to intervention. This approach aimed to elucidate the impact of probiotic intervention on the recovery process from acute enteritis at both the genetic and metabolic levels in the avian model. The results revealed that intervention with Saccharomyces cerevisiae Y301 improved the growth rate of chicks. and intervention with Lactiplantibacillus plantarum MS2c regulated the glycerophospholipid metabolism pathway and reshaped the gut microbiota structure in modeling chicks with acute enteritis, reducing the abundance of potentially pathogenic bacteria from the Alistipes and increasing the abundance of potentially beneficial species from the Christensenellaceae. This intervention resulted in the production of specific gut metabolites, including Gentamicin C and polymyxin B2, recognized for their therapeutic effects on acute enteritis. The combined intervention of S. cerevisiae Y301 and L. plantarum MS2c not only enhanced growth performance but also mitigated intestinal wall damage and increased the abundance of gut metabolites such as gentamicin C and polymyxin B2, thereby mitigating symptoms of enteritis. Furthermore, this combined intervention reduced the levels of serum immune markers, including IL-10, IL-6, TNF-α, IFN-γ, and D-lactic acid, thus mitigating intestinal epithelial cell damage and promoting acute enteritis recovery. This study provides crucial insights into the mechanisms of action of probiotics and probiotic-fermented coconut water in acute enteritis recovery, offering new perspectives for sustainable farming practices for Wenchang chicken.

12.
J Agric Food Chem ; 72(8): 4074-4088, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323407

RESUMO

Sialylated immunoglobulin G (IgG) is a vital glycoprotein in breast milk with the ability to promote the growth of Bifidobacterium in gut microbiota and relieve inflammatory bowel disease (IBD) symptoms in vitro. Here, it was found that the microcapsules with sialylated IgG could protect and release sialylated IgG with its structure and function in the intestine. Furthermore, the sialylated IgG microcapsules alleviated the clinical symptoms (body weight, feed quantity, and colon length loss), decreased disease activity index score, suppressed the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IFN-γ, and MCP-1) and endotoxin (lipopolysaccharide), and enhanced the intestinal mucosal barrier (Claudin1, Muc2, Occludin, and ZO-1) in dextran sulfate sodium (DSS)-induced colitis mice. Additionally, the sialylated IgG microcapsules improved the gut microbiota by increasing the relative abundance of critical microbe Bifidobacterium bifidum and promoted the production of short-chain fatty acids (SCFAs). Correlation analysis indicated that the key microbes were strongly correlated with pro-inflammatory factors, clinical symptoms, tight junction protein, and SCFAs. These findings suggest that the sialylated IgG microcapsules have the potential to be used as a novel therapeutic approach for treating IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Feminino , Animais , Camundongos , Imunoglobulina G , Sulfato de Dextrana/efeitos adversos , Cápsulas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Citocinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
13.
Geroscience ; 46(3): 3085-3103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191834

RESUMO

Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.


Assuntos
Colite , Flavonóis , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , MicroRNAs , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/microbiologia , Biomarcadores
14.
Inflammopharmacology ; 32(1): 903-908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064111

RESUMO

This review will discuss evidence that aspirin possesses anticancer activity. Long-term observational retrospective studies on nurses and health professionals demonstrated that regular aspirin users had a significantly lower incidence of colorectal cancer (RCT). Prospective studies on patients with a high risk of developing colorectal polyps/cancer confirmed that aspirin use significantly lowered colorectal dysplasia. Numerous observational studies focused on the use of aspirin in a broad range of cancers demonstrating a consistent 20-30% preventive effect on cancer incidence and mortality. Random Controlled Trials provided conflicting results on the benefit of aspirin in preventing CRC. Based on the age, weight/body size of the subjects for reasons still being explored. Studies on rats/mice further demonstrated that treatment of animals with aspirin where colon cancer was induced chemically or genetically (APCMin mice) reduced colonic dysplasia and polyp formation. Aspirin treatment was also effective at reducing the growth of cancer cells transplanted into normal/immunocompromised mice, suggesting that aspirin may be effective in treating different cancers. This possibility is also supported in clinical studies that aspirin use pre- and postcancer diagnosis significantly reduced the metastatic spread of cancer and increased patient survival. Lastly, the importance of the antiplatelet actions of aspirin in the drug's anticancer activity and specifically cancer metastatic spread is discussed and the current controversy related to the conflicting recommendations of the USPSTF over the past five years on the use of aspirin to prevent CRC.


Assuntos
Aspirina , Neoplasias Colorretais , Humanos , Camundongos , Ratos , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Anti-Inflamatórios não Esteroides/efeitos adversos , Estudos Retrospectivos , Estudos Prospectivos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle
15.
Int Immunopharmacol ; 126: 111188, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995573

RESUMO

There is a growing amount of research that highlights the significant involvement of metabolic imbalance and the inflammatory response in the advancement of colitis. Arabinose is a naturally occurring bioactive monosaccharide that plays a crucial role in the metabolic processes and synthesis of many compounds in living organisms. However, the more detailed molecular mechanism by which the administration of arabinose alleviates the progression of colitis and its associated carcinogenesis is still not fully understood. In the present study, arabinose is recognized as a significant and inherent protector of the intestinal mucosal barrier through its role in preserving the integrity of tight junctions within the intestines. Also, it is important to note that there is a positive correlation between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), as well as chemically-induced colitis in mice, and lower levels of arabinose in the bloodstream. In two mouse models of colitis, caused by dextran sodium sulfate (DSS) or by spontaneous colitis in IL-10-/- mice, damage to the intestinal mucosa was reduced by giving the mice arabinose. When arabinose is administrated to model with colitis, it sets off a chain of events that help keep the lysosomes together and stop cathepsin B from being released. During the progression of intestinal epithelial injury, this process blocks myosin light chain kinase (MLCK) from damaging tight junctions and causing mitochondrial dysfunction. In summary, the results of the study have provided evidence supporting the beneficial effects of arabinose in mitigating the progression of colitis. This is achieved through its ability to avoid dysregulation of the intestinal barrier. Consequently, arabinose may hold promise as a therapeutic supplementation for the management of colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Arabinose/uso terapêutico , Arabinose/metabolismo , Arabinose/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Íntimas , Mucosa Intestinal , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
Environ Sci Pollut Res Int ; 30(60): 125609-125627, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006484

RESUMO

In recent years, with the increasing frequency of human engineering activities, the phenomenon of sodium sulfate erosion has been widely observed in the Loess Plateau. This not only leads to difficulties in land reclamation but also affects human health, posing a significant risk to the investment environment in the Northwest region of China. In this study, three types of loess were treated with sodium sulfate to prepare remolded soil samples with salt content levels of 0%, 0.5%, 1.0%, 1.5%, 2.0%, and 2.5%. Observations and tests were conducted at multiple scales. The results indicate significant differences in the structural characteristics of the three types of loess under the influence of sodium sulfate. The higher the salt content in the loess, the greater the degree of structural damage. Subsequently, macroscopic mechanical properties were determined through direct shear tests, and it was found that as the salt content in the loess increased, the strength decreased. The resulting macroscopic mechanical properties showed a strong correlation with the microstructural characteristics. This study provides valuable insights for soil and water conservation and geological disaster prevention in the Loess Plateau region.


Assuntos
Conservação dos Recursos Naturais , Conservação dos Recursos Hídricos , Humanos , Solo/química , Sulfatos , China
17.
Environ Sci Pollut Res Int ; 30(54): 114920-114935, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37878178

RESUMO

With the mass production of coal-based solid waste, coal mine filling can effectively consume it. The coal gasification slag is modified and prepared as coal mine filling material to meet the relevant technical requirements, which can realize the recycling of coal mine → coal chemical industry → coal mine. In this paper, in order to explore the evolution law of the mechanical properties and pore structure characteristics of the modified coal gasification slag-cement cemented paste backfill (MCGS-CPB) prepared by sodium sulfate excitation coal gasification slag, a combined macro-meso-micro testing method is used. MCGS-CPB with different sodium sulfate contents (1~5%) were prepared and tested for uniaxial compressive strength (UCS), mercury intrusion (MIP) and microscopic tests. The results show that sodium sulfate has a significant effect on the UCS and pore structure characteristics of MCGS-CPB. The mechanical properties and pore structure characteristics of MCGS-CPB were best when sodium sulfate was doped at 3%; the mechanical properties and pore structure characteristics of MCGS-CPB were deteriorated when the addition of sodium sulfate is higher than 3%. On the meso-scale, when sodium sulfate was doped with 3%, the more harmful pores of MCGS-CPB gradually changed into harmless, less harmful, and harmful pores, and the macroscopic mechanical properties were gradually improved; when the addition of sodium sulfate is higher than 3%, the harmless, less harmful, and harmful pores of MCGS-CPB gradually changed into more harmful pores, and the macroscopic mechanical properties were deteriorated. On a microscopic scale, sodium sulfate can cause MCGS-CPB to form hydration products with expansion properties. The presence of a reasonable amount of sodium sulfate in the pores of MCGS-CPB is beneficial to the development of mechanical properties. However, excessive presence will lead to the formation of expansion stress, gradual formation of micro-expansion cracks, and deteriorate the macroscopic mechanical properties. Hence, the volcanic ash activity of coal gasification slag excited by external addition of sodium sulfate should not exceed 3%. This study provides a reference value for application ratio of sodium sulfate-stimulated MCGS-CPB used in coal mine filling design.


Assuntos
Materiais de Construção , Sulfatos , Força Compressiva , Carvão Vegetal , Cinza de Carvão , Carvão Mineral
18.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834610

RESUMO

To achieve an adjustable setting time and significantly improved early strength of a new type of sulphoaluminate cement-based double-liquid grouting material (SACDL), the effects of calcium formate, sodium sulfate, lithium carbonate, and a composite early strength agent on the setting hardening and early hydration behavior of SACDL paste were studied by means of setting time, fluidity, compressive strength, and viscosity tests. The results showed that the adsorption and osmosis of calcium formate, the complex decomposition of sodium sulfate, the precipitation polarization of lithium carbonate and the synergistic action of the composite early strength agent could accelerate the early hydration rate of SACDL, shorten the coagulation time, and improve the early strength of SACDL. The composite effect of 0.8% calcium formate and 0.5% sodium sulfate is the most significant in promoting coagulation and early strength; the initial setting time and final setting time of the slurry were shortened to 5 min and 10 min, respectively; and the 3 h compressive strength was capable of reaching 16.7 MPa, 31% higher than that of the blank group. In addition, X-ray diffraction and SEM morphology observation were used to study the composition of the hydration products and the evolution of the microstructure, which revealed the early hydration mechanism of SACDL under the synergistic effect of the composite early strength agent: (1) The solubility of tricalcium aluminate (C3A) and dihydrate gypsum (CaSO4·2H2O) increased under the low content composite early strength agent condition, which increased the ettringite (AFt) formation rate. HCOO- was able to penetrate the hydration layers of tricalcium silicate (C3S) and dicalcium silicate (C2S), accelerating the dissolution of C3S and C2S and promoting the early hydration of SACDL. (2) Under the condition of a high dosage of the composite early strength agent, the further increase in Ca2+ concentration promoted the crystallization nodules and precipitation of CH and accelerated the formation of calcium silicate hydrate (C-S-H) gel. C-S-H was filled between a large number of rod-like AFt crystals, thus making the structure more dense.

19.
J Clin Med ; 12(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834980

RESUMO

(1) Background: A surgical operation on an inflamed bowel is, diachronically, a challenge for the surgeon, especially for patients with inflammatory bowel disease. Adipose tissue-derived mesenchymal stromal cells are already in use in clinical settings for their anti-inflammatory properties. The rationale of the current study was to use AdMSCs in high-risk anastomoses to monitor if they attenuate inflammation and prevent anastomotic leak. (2) Methods: a total of 4 groups of rats were subjected to a surgical transection of the large intestine and primary anastomosis. In two groups, DSS 5% was administered for 7 days prior to the procedure, to induce acute intestinal inflammation. After the anastomosis, 5 × 106 autologous AdMSCs or an acellular solution was injected locally. Macroscopic evaluation, bursting pressure, hydroxyproline, and inflammatory cytokine expression were the parameters measured on the 8th post-operative day. (3) Results: Significantly less intra-abdominal complications, higher bursting pressures, and a decrease in pro-inflammatory markers were found in the groups that received AdMSCs. No difference in VEGF expression was observed on the 8th post-operative day. (4) Conclusions: AdMSCs attenuate inflammation in cases of acutely inflamed anastomosis.

20.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1806-1818, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37654075

RESUMO

Effective and non-toxic therapeutic agents are lacking for the prevention and treatment of colitis. Previous studies found that methyl cinnamate (MC), extracted from galangal ( Alpinia officinarum Hance), has anti-inflammatory properties. However, whether MC is effective as anti-colitis therapy remains unknown. In this study, we investigate the therapeutic effects of MC on dextran sulfate sodium (DSS)-induced colitis in mice and further explore its potential mechanism of action. MC treatment relieves symptoms associated with DSS-induced colitis, including the recovery of DSS-induced weight loss, decreases the disease activity index score, and increases the colon length without toxic side effects. MC treatment protects the integrity of the intestinal barrier in mice with DSS-induced colitis and inhibits the overexpression of pro-inflammatory cytokines in vivo and in vitro. Moreover, the MAPK signaling pathway is found to be closely related to the treatment with MC of colitis. Western blot analysis show that phosphorylation of the p38 protein in colon tissues treated with MC is markedly reduced and phosphorylation levels of the p38, JNK and ERK proteins are significantly decreased in RAW 264.7 cells treated with MC, indicating that the mechanism of MC in treating DSS-induced colitis could be achieved by inhibiting the MAPK signaling pathway. Furthermore, 16S RNA sequencing analysis show that MC can improve intestinal microbial dysbiosis in mice with DSS-induced colitis. Altogether, these findings suggest that MC may be a novel therapeutic candidate with anti-colitis efficacy. Furthermore, MC treatment relieves the symptoms of colitis by inhibiting the MAPK signaling pathway and improving the intestinal microbiota.


Assuntos
Colite , Camundongos , Animais , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Transdução de Sinais , Colo/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA