Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Exp Bot ; 75(5): 1580-1600, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38035729

RESUMO

Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.


Assuntos
Ácido Abscísico , Oryza , Brassinosteroides , Oryza/fisiologia , Solo , Meiose , Água
2.
Environ Pollut ; 343: 123187, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123113

RESUMO

The widespread presence of thiacloprid (THI), a neonicotinoid, raises concerns for human health and the aquatic environment due to its persistence, toxicity, and bioaccumulation. The fate of THI in paddy multimedia systems is mainly governed by irrigation practices, but the potential impacts remain poorly documented. This study investigated the effects of water management practices on THI spatiotemporal dynamics in paddy multimedia systems by combining soil column experiments and a non-steady-state multimedia model. The results indicated the wetting-drying cycle (WDC) irrigation reduced THI occurrences in environmental phases (i.e., soil, interstitial water, and overlying water) and accelerated the THI loss through the THI aerobic degradation process. THI occurrences in the soil and water phases decreased from 18.8% for conventional flooding (CF) treatment to 9.2% for severe wetting-drying cycle (SW) treatment after 29 days, while the half-lives shortened from 11.1 days to 7.3 days, respectively. Meanwhile, the WDC decreased THI outflow from leakage water, which reduced the THI risk of leaching. There was no significant difference in THI plant uptake and volatilization between CF and WDC treatments. The mean proportions of THI fate in paddy multimedia systems followed the order: THI degradation (57.7%), outflow from leakage water (25.5%), occurrence in soil (12.4%), plant uptake (3.4%), occurrence in interstitial water (0.7%), occurrence in overlying water (0.3%), volatilization (<0.1%) after 29 days. The sensitivity analysis identified the soil organic carbon partition coefficient (KOC) as the most sensitive parameter affecting THI's fate. In addition, the topsoil layers of 0-4 cm were the main sink of THI, holding 67% of THI occurrence in the soil phase. The THI occurrence in interstitial water was distributed evenly throughout the soil profile. These findings made beneficial theoretical supplements and provided valuable empirical evidence for water management practices to reduce the THI ecological risk.


Assuntos
Oryza , Solo , Tiazinas , Humanos , Multimídia , Carbono , Água , Neonicotinoides
3.
J Exp Bot ; 74(16): 4808-4824, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37409696

RESUMO

Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.


Assuntos
Micorrizas , Simbiose , Secas , Água , Micorrizas/fisiologia , Produtos Agrícolas , Solo , Raízes de Plantas/microbiologia
4.
J Exp Bot ; 74(16): 4789-4807, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37354081

RESUMO

The water deficit experienced by crops is a function of atmospheric water demand (vapor pressure deficit) and soil water supply over the whole crop cycle. We summarize typical transpiration response patterns to soil and atmospheric drying and the sensitivity to plant hydraulic traits. We explain the transpiration response patterns using a soil-plant hydraulic framework. In both cases of drying, stomatal closure is triggered by limitations in soil-plant hydraulic conductance. However, traits impacting the transpiration response differ between the two drying processes and act at different time scales. A low plant hydraulic conductance triggers an earlier restriction in transpiration during increasing vapor pressure deficit. During soil drying, the impact of the plant hydraulic conductance is less obvious. It is rather a decrease in the belowground hydraulic conductance (related to soil hydraulic properties and root length density) that is involved in transpiration down-regulation. The transpiration response to increasing vapor pressure deficit has a daily time scale. In the case of soil drying, it acts on a seasonal scale. Varieties that are conservative in water use on a daily scale may not be conservative over longer time scales (e.g. during soil drying). This potential independence of strategies needs to be considered in environment-specific breeding for yield-based drought tolerance.


Assuntos
Transpiração Vegetal , Solo , Pressão de Vapor , Transpiração Vegetal/fisiologia , Melhoramento Vegetal , Água/fisiologia , Produtos Agrícolas , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia
5.
Environ Pollut ; 331(Pt 1): 121909, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245790

RESUMO

Alteration of the structure of soil microbial communities following the elimination of hydrophobic organic pollutants (e.g., polycyclic aromatic hydrocarbons, PAHs) is generally assessed using DNA-based techniques, and soil is often required to dry prior to pollutant addition, to facilitate a better mix when establishing microcosms. However, the drying practice may have a legacy effect on soil microbial community structure, which would in turn influence the biodegradation process. Here, we used 14C-labeled phenanthrene to examine the potential side effects of precedent short-term drought events. The results indicate that the drying practice had legacy effects on soil microbial community structure, illustrated by irreversible shifts in the communities. The legacy effects had no significant impact on phenanthrene mineralization and non-extractable residue formation. However, they altered the response of bacterial communities to PAH degradation, leading to a decrease in the abundance of potential PAH degradation genes plausibly attributed to moderately abundant taxa. Based on a comparison of the varied effects of different drying intensity levels, an accurate description of microbial responses to phenanthrene degradation strongly relies on the establishment of stable microbial communities before PAH amendment. Concurrent alterations in the communities resulting from environmental perturbation could greatly mask minor alterations from the degradation of recalcitrant hydrophobic PAH. In practice, to minimize the legacy effects, a soil equilibration step with a reduced drying intensity is indispensable.


Assuntos
Poluentes Ambientais , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
6.
Plant Cell Environ ; 46(7): 2046-2060, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36942406

RESUMO

Moderate soil drying can cause a strong decrease in the soil-root system conductance. The resulting impact on root water uptake depends on the spatial distribution of the altered conductance relatively to remaining soil water resources, which is largely unknown. Here, we analyzed the vertical distribution of conductance across root systems using a novel, noninvasive sensor technology on pot-grown faba bean and maize plants. Withholding water for 4 days strongly enhanced the vertical gradient in soil water potential. Therefore, roots in upper and deeper soil layers were affected differently: In drier, upper layers, root conductance decreased by 66%-72%, causing an amplification of the drop in leaf water potential. In wetter, deeper layers, root conductance increased in maize but not in faba bean. The consequently facilitated deep-water uptake in maize contributed up to 21% of total water uptake at the end of the measurement. Analysis of root length distributions with MRI indicated that the locally increased conductance was mainly caused by an increased intrinsic conductivity and not by additional root growth. Our findings show that plants can partly compensate for a reduced root conductance in upper, drier soil layers by locally increasing root conductivity in wetter layers, thereby improving deep-water uptake.


Assuntos
Vicia faba , Água , Secas , Zea mays , Raízes de Plantas , Solo
7.
Photochem Photobiol Sci ; 22(7): 1637-1654, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36995651

RESUMO

Ground level UV-B (290-315 nm) and UV-A (315-400 nm) radiation regulates multiple aspects of plant growth and development. In a natural environment, UV radiation interacts in a complex manner with other environmental factors (e.g., drought) to regulate plants' morphology, physiology, and growth. To assess the interactive effects of UV radiation and soil drying on plants' secondary metabolites and transcript abundance, we performed a field experiment using two different accessions of Medicago truncatula (F83005-5 French origin and Jemalong A17 Australian origin). Plants were grown for 37 days under long-pass filters to assess the effects of UV short wavelength (290-350 nm, UVsw) and UV-A long wavelength (350-400 nm, UV-Alw). Soil-water deficit was induced by not watering half of the plants during the last seven days of the experiment. The two accessions differed in the concentration of flavonoids in the leaf epidermis and in the whole leaf: F83005-5 had higher concentration than Jemalong A17. They also differed in the composition of the flavonoids: a greater number of apigenin derivatives than tricin derivatives in Jemalong A17 and the opposite in F83005-5. Furthermore, UVsw and soil drying interacted positively to regulate the biosynthesis of flavonoids in Jemalong A17 through an increase in transcript abundance of CHALCONE SYNTHASE (CHS). However, in F83005-5, this enhanced CHS transcript abundance was not detected. Taken together the observed metabolite and gene transcript responses suggest differences in mechanisms for acclimation and stress tolerance between the accessions.


Assuntos
Medicago truncatula , Raios Ultravioleta , Medicago truncatula/genética , Solo , Austrália , Flavonoides , Plantas
8.
Ann Bot ; 131(2): 373-386, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479887

RESUMO

BACKGROUND AND AIMS: Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying. We hypothesize that the stomatal response to soil drying is related to a loss in soil hydraulic conductivity at the root-soil interface, which in turn depends on plant hydraulic traits. METHODS: We investigate the response of 48 contrasting maize (Zea mays) genotypes to soil drying, utilizing a novel phenotyping facility. In this context, we measure the relationship between leaf water potential, soil water potential, soil water content and transpiration, as well as root, rhizosphere and aboveground plant traits. KEY RESULTS: Genotypes differed in their responsiveness to soil drying. The critical soil water potential at which plants started decreasing transpiration was related to a combination of above and belowground traits: genotypes with a higher maximum transpiration and plant hydraulic conductance as well as a smaller root and rhizosphere system closed stomata at less negative soil water potentials. CONCLUSIONS: Our results demonstrate the importance of belowground hydraulics for stomatal regulation and hence drought responsiveness during soil drying. Furthermore, this finding supports the hypothesis that stomata start to close when soil hydraulic conductivity drops at the root-soil interface.


Assuntos
Dessecação , Zea mays , Zea mays/genética , Genótipo , Fenótipo , Folhas de Planta/genética , Transpiração Vegetal , Solo , Estômatos de Plantas , Raízes de Plantas/genética
9.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887118

RESUMO

Poor grain filling of inferior spikelets, especially in some large-panicle rice varieties, is becoming a major limitation in breaking the ceiling of rice production. In our previous studies, we proved that post-anthesis moderate soil drying (MD) was an effective way to promote starch synthesis and inferior grain filling. As one of the most important regulatory processes in response to environmental cues and at different developmental stages, the function of alternative splicing (AS) has not yet been revealed in regulating grain filling under MD conditions. In this study, AS events at the most active grain-filling stage were identified in inferior spikelets under well-watered control (CK) and MD treatments. Of 16,089 AS events, 1840 AS events involving 1392 genes occurred differentially between the CK and MD treatments, many of which function on spliceosome, ncRNA metabolic process, starch, and sucrose metabolism, and other functions. Some of the splicing factors and starch synthesis-related genes, such as SR protein, hnRNP protein, OsAGPL2, OsAPS2, OsSSIVa, OsSSIVb, OsGBSSII, and OsISA1 showed differential AS changes under MD treatment. The expression of miR439f and miR444b was reduced due to an AS event which occurred in the intron where miRNAs were located in the MD-treated inferior spikelets. On the contrary, OsAGPL2, an AGPase encoding gene, was alternatively spliced, resulting in different transcripts with or without the miR393b binding site, suggesting a potential mechanism for miRNA-mediated gene regulation on grain filling of inferior spikelets in response to MD treatment. This study provides some new insights into the function of AS on the MD-promoted grain filling of inferior spikelets, and potential application in agriculture to increase rice yields by genetic approaches.


Assuntos
Oryza , Processamento Alternativo , Grão Comestível/genética , Grão Comestível/metabolismo , Oryza/metabolismo , Solo , Amido/metabolismo
10.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567127

RESUMO

Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to progressive soil drying under varied VPDs. Potato plants were grown either in four separate climate-controlled greenhouse cells with different VPD levels (viz., 0.70, 1.06, 1.40, and 2.12 kPa, respectively) or under a rainout shelter in the field. The VPD of each greenhouse cell was caused by two air temperature levels (23 and 30 °C) combined with two relative humidity levels (50 and 70%), and the VPD of the field was natural conditions. Irrigation treatments were commenced three or four weeks after planting in greenhouse cells or fields, respectively. The results indicated that soil water deficits limited leaf gas exchange and shoot dry matter (DMshoot) of plants while increasing the concentration of abscisic acid (ABA) in the leaf and xylem, as well as water use efficiency (WUE) across all VPD levels. High VPD decreased stomatal conductance (gs) but increased transpiration rate (Tr). High VPD increased the threshold of soil water for Tr began to decrease, while the soil water threshold for gs depended on temperature due to the varied ABA response to temperature. High VPD decreased leaf water potential, leaf area, and DMshoot, which exacerbated the inhibition of soil drying to plant growth. Across the well-watered plants in both experiments, negative linear relationships of gs and WUE to VPD and positive linear relations between Tr and VPD were found. The results provide some novel information for developing mechanistic models simulating crop WUE and improving irrigation scheduling in future arid climates.

11.
Microorganisms ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35456724

RESUMO

Air-dried soil archives are important for microbial ecology research, although the process of air-drying preservation inevitably destroys the original microbial information in soils. Only upon fully understanding the limitations of air-dried soil can it play a greater role. The value of air-dried soil depends on the fidelity of microbial community structure information in the air-dried soil relative to that in fresh soil. To evaluate this, high-throughput sequencing was applied to investigate the microbial community of fresh soils and 227 days air-dried archives from typical farmland under a large spatial scale, and PERMANOVA was used to analyze the explanation proportion (EP) of the spatial factor on the microbial community structure in any paired-fresh or air-dried soils. The results show that for any paired soils, the value of EP ranged from 42.4% to 97.9% (p < 0.001). Importantly, taking fresh soil as a reference, the value of EP declined in air-dried soils (effect size r = 0.79, p < 0.001). Furthermore, the standardized difference in EP between fresh and air-dried soil (NDEP) was used to characterize the fidelity of variance source of microbial community structure in air-dried soils, and correlation tests showed that NDEP was negatively correlated with spatial distance (r = −0.21, p < 0.01) and with environmental difference (r = −0.37, p < 0.001). Further analyses show that larger NDEP was observed at a spatial distance <25 km or an environmental difference <0.58. Variance partitioning analysis showed that 28.0% of the variation in NDEP could be explained, with environmental difference constituting 14.0% and the interaction between the environmental difference and spatial distance constituting the remaining 14.0%. Soil texture was the most important factor for predicting NDEP, followed by soil pH and annual average temperature. This study not only emphasizes the possible decline in EP when using air-dried soils to reveal microbial community patterns, but also implies that air-dried soil is more suitable for addressing scientific questions under a large spatial scale or environmental differences.

12.
J Exp Bot ; 73(11): 3330-3338, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323893

RESUMO

Sufficient water is essential for plant growth and production. Root hairs connect roots to the soil, extend the effective root radius, and greatly enlarge the absorbing surface area. Although the efficacy of root hairs in nutrient uptake, especially phosphorus, has been well recognized, their role in water uptake remains contentious. Here we review recent advances in this field, discuss the factors affecting the role of root hairs in water uptake, and propose future directions. We argue that root hair length and shrinkage, in response to soil drying, explain the apparently contradictory evidence currently available. Our analysis revealed that shorter and vulnerable root hairs (i.e. rice and maize) made little, if any, contribution to root water uptake. In contrast, relatively longer root hairs (i.e. barley) had a clear influence on root water uptake, transpiration, and hence plant response to soil drying. We conclude that the role of root hairs in water uptake is species (and probably soil) specific. We propose that a holistic understanding of the efficacy of root hairs in water uptake will require detailed studies of root hair length, turnover, and shrinkage in different species and contrasting soil textures.


Assuntos
Hordeum , Água , Raízes de Plantas , Solo , Zea mays
13.
Plant J ; 109(6): 1457-1472, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921476

RESUMO

Poor grain filling of inferior spikelets is becoming a severe problem in some super rice varieties with large panicles. Moderate soil drying (MD) after pollination has been proven to be a practical strategy to promote grain filling. However, the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, transcriptomic analysis of the most active grain filling stage revealed that both starch metabolism and phytohormone signaling were significantly promoted by MD treatment, accompanied by increased enzyme activities of starch synthesis and elevated abscisic acid (ABA) and indole-3-acetic acid (IAA) content in the inferior spikelet. Moreover, the IAA biosynthesis genes OsYUC11 and OsTAR2 were upregulated, while OsIAA29 and OsIAA24, which encode two repressors of auxin signaling, were downregulated by MD, implying a regulation of both IAA biosynthesis and auxin signal transduction in the inferior spikelet by MD. A notable improvement in grain filling of the inferior spikelet was found in the aba8ox2 mutant, which is mutated in an ABA catabolism gene. In contrast, overexpression of OsABA8ox2 significantly reduced grain filling. Interestingly, not only the IAA content, but also the expression of IAA biosynthesis and auxin-responsive genes displayed a similar trend to that in the inferior spikelet under MD. In addition, several OsTPP genes were downregulated in the inferior spikelets of both MD/ABA-treated wild-type plants and the aba8ox2 mutant, resulting in lower trehalose content and higher levels of -6-phosphate (T6P), thereby increasing the expression of OsTAR2, a target of T6P. Taken together, our results suggest that the synergistic interaction of ABA-mediated accumulation of IAA promotes grain filling of inferior spikelets under MD.


Assuntos
Oryza , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Solo
14.
Front Plant Sci ; 12: 794409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956294

RESUMO

The maximizing of water use efficiency (WUE) and radiation use efficiency (RUE) is vital to improving crop production in dryland farming systems. However, the fundamental question as to the association of WUE with RUE and its underlying mechanism under limited-water availability remains contentious. Here, a two-year field trial for maize designed with five progressive soil drying regimes applied at two different growth stages (three-leaf stage and seven-leaf stage) was conducted during the 2013-2014 growing seasons. Both environmental variables and maize growth traits at the leaf and canopy levels were measured during the soil drying process. The results showed that leaf WUE increased with irrigation reduction at the early stage, while it decreased with irrigation reduction at the later stage. Leaf RUE thoroughly decreased with irrigation reduction during the progressive soil drying process. Aboveground biomass (AGB), leaf area index (LAI), a fraction of absorbed photosynthetically active radiation (fAPAR), and light extinction coefficient (k) of the maize canopy were significantly decreased by water deficits regardless of the growth stages when soil drying applied. The interrelationships between WUE and RUE were linear across the leaf and canopy scales under different soil drying patterns. Specifically, a positive linear relationship between WUE and RUE are unexpectedly found when soil drying was applied at the three-leaf stage, while it turned out to be negative when soil drying was applied at the seven-leaf stage. Moreover, the interaction between canopy WUE and RUE was more regulated by fAPAR than LAI under soil drying. Our findings suggest that more attention must be paid to fAPAR in evaluating the effect of drought on crops and may bring new insights into the interrelationships of water and radiation use processes in dryland agricultural ecosystems.

15.
Front Plant Sci ; 12: 722954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721455

RESUMO

Recent studies have identified soil drying as a dominant driver of transpiration reduction at the global scale. Although Arbuscular Mycorrhiza Fungi (AMF) are assumed to play a pivotal role in plant response to soil drying, studies investigating the impact of AMF on plant water status and soil-plant hydraulic conductance are lacking. Thus, the main objective of this study was to investigate the influence of AMF on soil-plant conductance and plant water status of tomato under drought. We hypothesized that AMF limit the drop in matric potential across the rhizosphere, especially in drying soil. The underlying mechanism is that AMF extend the effective root radius and hence reduce the water fluxes at the root-soil interface. The follow-up hypothesis is that AMF enhance soil-plant hydraulic conductance and plant water status during soil drying. To test these hypotheses, we measured the relation between transpiration rate, soil and leaf water potential of tomato with reduced mycorrhiza colonization (RMC) and the corresponding wild type (WT). We inoculated the soil of the WT with Rhizophagus irregularis spores to potentially upsurge symbiosis initiation. During soil drying, leaf water potential of the WT did not drop below -0.8MPa during the first 6days after withholding irrigation, while leaf water potential of RMC dropped below -1MPa already after 4days. Furthermore, AMF enhanced the soil-plant hydraulic conductance of the WT during soil drying. In contrast, soil-plant hydraulic conductance of the RMC declined more abruptly as soil dried. We conclude that AMF maintained the hydraulic continuity between root and soil in drying soils, hereby reducing the drop in matric potential at the root-soil interface and enhancing soil-plant hydraulic conductance of tomato under edaphic stress. Future studies will investigate the role of AMF on soil-plant hydraulic conductance and plant water status among diverse plant species growing in contrasting soil textures.

16.
Plant Physiol Biochem ; 166: 531-539, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174658

RESUMO

Phosphorus (P) deficiency largely restricts plant growth and lead to severe yield losses. Therefore, identification of novel root traits to improve P uptake is needed to circumvent yield losses. White lupin (Lupinus albus) is a legume crop that develops cluster roots and has the high phosphorus use efficiency in low P soils. We aimed to investigate the association between cluster roots (CR) rhizosheath formation and P uptake in white lupin. Rhizosheath formation and P concentration were evaluated under four soil treatments. CR increased up to 2.5-fold of overall plant dry weight under SD-P compared to WW + P (control), partly attributable to variations in CR development. Our data showed that SD-P significantly increase rhizosheath weight in white lupin. Among the root segments, MCR showed improved P accumulation in the root which is associated with increased MCR rhizosheath weight. Additionally, a positive correlation was observed between MCR rhizosheath weight and P uptake. Moreover, high sucrose content was recorded in MCR, which may contribute in CR growth under SD-P. Expression analysis of genes related to sucrose accumulation (LaSUC1, LaSUC5, and LaSUC9) and phosphorus uptake (LaSPX3, LaPHO1, and LaPHT1) exhibited peaked expression in MCR under SD-P. This indicate that root sucrose status may facilitate P uptake under P starvation. Together, the ability to enhance P uptake of white lupin is largely associated with MCR rhizosheath under SD-P. Our results showed that gene expression modulation of CR forming plant species, demonstrating that these novel root structures may play crucial role in P acquisition from the soil. Our findings could be implicated for developing P and water efficient crop via CR development in sustainable agriculture.


Assuntos
Lupinus , Transporte Biológico , Lupinus/genética , Fósforo , Raízes de Plantas , Solo
17.
Plant Cell Environ ; 44(6): 1935-1945, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629760

RESUMO

Soil drying enhances root ABA accumulation and rhizosheath formation, but whether ABA mediates rhizosheath formation is unclear. Here, we used the ABA-deficient mutant Az34 to investigate molecular and morphological changes by which ABA could affect rhizosheath formation. Mild soil drying with intermittent watering increased rhizosheath formation by promoting root and root hair elongation. Attenuated root ABA accumulation in Az34 barley constrained the promotion of root length and root hair length by drying soil, such that Az34 had a smaller rhizosheath. Pharmacological experiments of adding fluridone (an ABA biosynthesis inhibitor) and ABA to drying soil restricted and enhanced rhizosheath formation respectively in Az34 and wild-type Steptoe barley. RNA sequencing suggested that ABA accumulation mediates auxin synthesis and responses and root and root hair elongation in drying soil. In addition, adding indole-3-acetic acid (IAA) to drying soil increased rhizosheath formation by promoting root and root hair elongation in Steptoe and Az34 barley. Together, these results show that ABA accumulation induced by mild soil drying enhance barley rhizosheath formation, which may be achieved through promoting auxin response.


Assuntos
Ácido Abscísico/metabolismo , Hordeum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Solo/química , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Hordeum/efeitos dos fármacos , Hordeum/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Mutação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo
18.
Plant Cell Environ ; 44(2): 425-431, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150971

RESUMO

The fundamental question as to what triggers stomatal closure during soil drying remains contentious. Thus, we urgently need to improve our understanding of stomatal response to water deficits in soil and atmosphere. Here, we investigated the role of soil-plant hydraulic conductance (Ksp ) on transpiration (E) and stomatal regulation. We used a root pressure chamber to measure the relation between E, leaf xylem water potential (ψleaf-x ) and soil water potential (ψsoil ) in tomato. Additional measurements of ψleaf-x were performed with unpressurized plants. A soil-plant hydraulic model was used to simulate E(ψleaf-x ) for decreasing ψsoil . In wet soils, E(ψleaf-x ) had a constant slope, while in dry soils, the slope decreased, with ψleaf-x rapidly and nonlinearly decreasing for moderate increases in E. The ψleaf-x measured in pressurized and unpressurized plants matched well, which indicates that the shoot hydraulic conductance did not decrease during soil drying and that the decrease in Ksp is caused by a decrease in soil-root conductance. The decrease of E matched well the onset of hydraulic nonlinearity. Our findings demonstrate that stomatal closure prevents the drop in ψleaf-x caused by a decrease in Ksp and elucidate a strong correlation between stomatal regulation and belowground hydraulic limitation.


Assuntos
Transpiração Vegetal/fisiologia , Solanum lycopersicum/fisiologia , Desidratação , Secas , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Solo/química , Água/fisiologia , Xilema/fisiologia
19.
J Exp Bot ; 72(4): 1384-1398, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33130853

RESUMO

Moderate soil drying (MD) imposed at the post-anthesis stage significantly improves carbon reserve remobilization in rice stems, increasing grain yield. However, the methylome and transcriptome profiles of carbon reserve remobilization under MD are obscure in indica and japonica rice stems. Here, we generated whole-genome single-base resolution maps of the DNA methylome in indica and japonica rice stems. DNA methylation levels were higher in indica than in japonica and positively correlated with genome size. MD treatment had a weak impact on the changes in methylation levels in indica. Moreover, the number of differentially methylated regions was much lower in indica, indicating the existence of cultivar-specific methylation patterns in response to MD during grain filling. The gene encoding ß-glucosidase 1, involved in the starch degradation process, was hypomethylated and up-regulated in indica, resulting in improved starch to sucrose conversion under MD treatment. Additionally, increased expression of MYBS1 transactivated the expression of AMYC2/OsAMY2A in both indica and japonica, leading to enhanced starch degradation under MD. In contrast, down-regulated expression of MYB30 resulted in increased expression of BMY5 in both cultivars. Our findings decode the dynamics of DNA methylation in indica and japonica rice stems and propose candidate genes for improving carbon reserve remobilization.


Assuntos
Oryza , Carbono , Epigenoma , Perfilação da Expressão Gênica , Oryza/genética , Solo
20.
Physiol Plant ; 172(2): 477-486, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33002192

RESUMO

The genus Vigna (Fabaceae) is an agriculturally important taxon, which includes several crop species such as cowpea (Vigna unguiculata L.), mung bean (Vigna radiata) and azuki bean (Vigna angularis). Most studies have focused on cowpea (V. unguiculata (L.) as a drought-resistant crop, although insights on the mechanisms that confer this species the ability to grow in dry environment are still not fully resolved. The diversity of this rich genus has been overlooked in many physiological studies. This study explores the physiological mechanisms of response to soil drying (N2 fixation, transpiration rate and changes in C and N allocation) across three species of the Vigna genus: V. radiata, V. unguiculata, V. vexillata (tuber cowpea). A significant variability among the studied Vigna accessions was found for the threshold in decline of N2 fixation with soil drying. Less variability was observed in the transpiration threshold. Through the analysis of leaf traits variation under well-watered and water-deficit conditions, we were able to relate the variability in N2 fixation and transpiration response to C/N metabolism modifications resulting in different allocation of carbon and nitrogen to leaves under water deficit.


Assuntos
Fabaceae , Vigna , Secas , Folhas de Planta , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA