Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Sci Rep ; 14(1): 24737, 2024 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-39433552

RESUMO

Paphiopedilum armeniacum, Paphiopedilum wenshanense and Paphiopedilum emersonii are critically endangered wild orchids. Their populations are under severe threat, with a dramatic decline in the number of their natural distribution sites. Ex situ conservation and artificial breeding are the keys to maintaining the population to ensure the success of ex situ conservation and field return in the future. The habitat characteristics and soil nutrient information of the last remaining wild distribution sites of the three species were studied. ITS high-throughput sequencing was used to reveal the composition and structure of the soil fungal community, analyze its diversity and functional characteristics, and reveal its relationship with soil nutrients. The three species preferred to grow on low-lying, ventilated and shaded declivities with good water drainage. There were significant differences in soil alkali-hydrolyzed nitrogen and available phosphorus among the three species. There were 336 fungal species detected in the samples. On average, there were different dominant groups in the soil fungal communities of the three species. The functional groups of soil fungi within their habitats were dominated by saprophytic fungi and ectomycorrhizae, with significant differences in diversity and structure. The co-occurrence network of habitat soil fungi was mainly positive. Soil pH significantly affected soil fungal diversity within their habitats of the three paphiopedilum species. The study confirmed that the dominant groups of soil fungi were significantly correlated with soil nutrients. The three species exhibit comparable habitat inclinations, yet they display substantial variations in the composition, structure, and diversity of soil fungi. The fungal functional group is characterized by a rich presence of saprophytic fungi, a proliferation of ectomycorrhizae, and a modest occurrence of orchid mycorrhizae. The symbiotic interactions among the soil fungi associated with these three species are well-coordinated, enhancing their resilience against challenging environmental conditions. There is a significant correlation between soil environmental factors and the composition of soil fungal communities, with pH emerging as a pivotal factor regulating fungal diversity. Our research into the habitat traits and soil fungal ecosystems of the three wild Paphiopedilum species has established a cornerstone for prospective ex situ conservation measures and the eventual reestablishment of these species in their native landscapes.


Assuntos
Ecossistema , Fungos , Micobioma , Orchidaceae , Microbiologia do Solo , Solo , China , Orchidaceae/microbiologia , Solo/química , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Biodiversidade , Micorrizas/genética , Micorrizas/classificação , Nitrogênio/análise
2.
Microorganisms ; 12(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39458304

RESUMO

Leguminous Inga trees are thought to enhance soil carbon (C) accumulation following reforestation, through mostly unknown mechanisms. This study amplified soil DNA using the ITS1F and ITS4 primers for PCR and Illumina MiSeq methods to identify fungal taxa, and traditional C analysis methods to evaluate how planted 4-, 8-, and 11-year-old Inga punctata trees affected soil fungal community compositions and C utilization patterns compared to old-growth I. punctata trees and an adjacent unplanted pasture within the same reforestation zone in Monteverde, Costa Rica. Along the tree age gradient, the planted I. punctata trees enhanced the tree soil C capture capacity, as indicated by increased levels of soil biomass C, Respiration, and efficiency of organic C use (with lower qCO2 values), and development of increasingly more abundant, stable, and successionally developed fungal communities, including those associated with the decomposition of complex organic C compounds. The level and strength of differences coincided with differences in the time of separation between the pasture and tree age or between the different tree ages. Fungal taxa were also identified as potential indicators of the early and late stages of soil recovery. Thus, planting I. punctata should be part of future reforestation strategies used in this region of the Monteverde Cloud Forest in Costa Rica.

3.
Front Microbiol ; 15: 1447999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391611

RESUMO

Rainforests provide vital ecosystem services that are underpinned by plant-soil interactions. The forests of Borneo are globally important reservoirs of biodiversity and carbon, but a significant proportion of the forest that remains after large-scale agricultural conversion has been extensively modified due to timber harvest. We have limited understanding of how selective logging affects ecosystem functions including biogeochemical cycles driven by soil microbes. In this study, we sampled soil from logging gaps and co-located intact lowland dipterocarp rainforest in Borneo. We characterised soil bacterial and fungal communities and physicochemical properties and determined soil functioning in terms of enzyme activity, nutrient supply rates, and microbial heterotrophic respiration. Soil microbial biomass, alpha diversity, and most soil properties and functions were resistant to logging. However, we found logging significantly shifted soil bacterial and fungal community composition, reduced the abundance of ectomycorrhizal fungi, increased the abundance of arbuscular mycorrhizal fungi, and reduced soil inorganic phosphorous concentration and nitrate supply rate, suggesting some downregulation of nutrient cycling. Within gaps, canopy openness was negatively related to ectomycorrhizal abundance and phosphomonoesterase activity and positively related to ammonium supply rate, suggesting control on soil phosphorus and nitrogen cycles via functional shifts in fungal communities. We found some evidence for reduced soil heterotrophic respiration with greater logging disturbance. Overall, our results demonstrate that while many soil microbial community attributes, soil properties, and functions may be resistant to selective logging, logging can significantly impact the composition and abundance of key soil microbial groups linked to the regulation of vital nutrient and carbon cycles in tropical forests.

4.
Microbiol Spectr ; : e0158924, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417649

RESUMO

Weeds pose a significant threat to agricultural productivity, emphasizing the urgent need for developing innovative biological herbicides. Soil is a rich reservoir of fungi with potential herbicidal properties. The Xinjiang region of China, characterized by unique biodiversity shaped by geographical and climatic factors, is likely to harbor distinctive fungal resources that remain understudied. This study investigated the herbicidal potential of soil fungi by collecting 123 soil samples from 33 diverse habitats in Xinjiang and isolating 114 fungal strains. Morphological characteristics and ITS sequence analysis identified these strains as 24 species belonging to 12 genera. Subsequently, 24 representative strains underwent phytotoxicity assays using detached weed leaves. Strain Tapu14C02 demonstrated significant herbicidal activity against 11 weeds, including Amaranthus retroflexus, Bidens pilosa, and Celosia argentea. Further identification confirmed the strain as Talaromyces purpureogenus. Pot experiments were conducted to evaluate the herbicidal potential of the strain. The spore suspension at a concentration of 1.0 × 108 spores/mL inhibited barnyard grass (Echinochloa crus-galli) seedling root length by 93.07%. Among the crude extracts from the fermentation broth, the ethyl acetate fraction exhibited the strongest herbicidal activity, causing complete inhibition of root growth at concentrations of 1000 µg/mL and 500 µg/mL. This study provides novel insights into the herbicidal potential of soil fungi in the Xinjiang region of China. IMPORTANCE: Weeds pose significant challenges by causing agricultural losses and ecological harm. Over the past decades, many weed species have developed high resistance to chemical herbicides, underscoring the urgent need for new biological herbicide alternatives. In this study, we isolated and screened herbicidal fungi from soil samples in Xinjiang with unique conditions of extreme arid. Notably, we discovered the T. purpureogenus strain Tapu14C02, which shows promising potential as a myco-herbicide. Both its conidia and fermentation broth exhibit broad-spectrum effectiveness against weeds. This research highlights the potential of fungal resources for sustainable agriculture.

5.
PeerJ ; 12: e18253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39403189

RESUMO

Background: Talaromyces species play an important role in the nutrient cycle in natural ecosystems, degradation of vegetal biomass in industries and the implications in medicine. However, the species diversity of this genus is still far from fully understood. Methods: The polyphasic taxonomic approach integrating morphological comparisons and molecular phylogenetic analyses based on BenA, CaM, Rpb2 and ITS sequences was used to propose three new Talaromyces species. Results: Three new species of sect. Talaromyces isolated from soil are proposed, namely, T. disparis (ex-type AS3.26221), T. funiformis (ex-type AS3.26220) and T. jianfengicus (ex-type AS3.26253). T. disparis is unique in low growth rate, velvety texture, limited to moderate sporulation, biverticillate, monoverticillate and irregular penicilli bearing a portion of abnormally large globose conidia, it has no close relatives in phylogeny. Being a member of T. pinophilus complex, T. funiformis produces mycelial funicles on Czapek yeast autolysate agar (CYA), 5% malt extract agar (MEA) and yeast extract (YES), sparse sporulation on Czapek agar (Cz), CYA, MEA and YES while abundant on oatmeal agar (OA), bearing appressed biverticillate penicilli and globose to pyriform conida with smooth to finely rough walls. T. jianfengicus belongs to T. verruculosus complex, is characterized by velvety colony texture with moderate to abundant elm-green conidia en masse, producing biverticillate penicilli, globose conidia with verrucose walls. Conclusion: It is now a common practice in establishing new species of Aspergillus, Penicillium and Talaromyces based on morphological characters and phylogenetic analyses of BenA, CaM, Rpb2 and ITS sequences. The proposal of the three novelties of Talaromyces in this article is not only supported by their morphological distinctiveness, but also confirmed by the phylogenetic analyses of the concatenated BenA-CaM-Rpb2 and BenA-CaM-ITS, as well as the individual BenA, CaM, Rpb2 and ITS sequence matrices.


Assuntos
Filogenia , Microbiologia do Solo , Talaromyces , Talaromyces/genética , Talaromyces/isolamento & purificação , Talaromyces/classificação , China , DNA Fúngico/genética , Esporos Fúngicos/genética
6.
Chin J Nat Med ; 22(9): 854-863, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39326979

RESUMO

Four novel macrocyclic trichothecenes, termed mytoxins D-G (1-4), along with four known analogs (5-8), were isolated from the ethyl acetate extract of fermented rice inoculated with the fungus Myrothecium verrucaria PA57. Each compound features a tricyclic 12,13-epoxytrichothec-9-ene (EPT) core. Notably, mytoxin G (4) represents the first instance of a macrocyclic trichothecene incorporating a glucosyl unit within the trichothecene structure. The structures of the newly identified compounds were elucidated through comprehensive spectroscopic analysis combined with quantum chemical calculations. All isolated compounds demonstrated cytotoxic activity against the CAL27 and HCT116 cell lines, which are models for human oral squamous cell carcinoma and colorectal cancer, respectively. Specifically, mytoxin D (1) and mytoxin F (3) exhibited pronounced cytotoxic effects against both cancer cell lines, with IC50 values ranging from 3 to 6 nmol·L-1. Moreover, compounds 1 and 3 were found to induce apoptosis in HCT116 cells by activating caspase-3.


Assuntos
Apoptose , Hypocreales , Tricotecenos , Tricotecenos/química , Tricotecenos/farmacologia , Tricotecenos/isolamento & purificação , Tricotecenos/toxicidade , Humanos , Hypocreales/química , Estrutura Molecular , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Células HCT116 , Oryza/química , Caspase 3/metabolismo
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39236233

RESUMO

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.


Assuntos
Amônia , Bacillus subtilis , Nitratos , Nitrogênio , Microbiologia do Solo , Amônia/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Solo/química , Interações Microbianas , Concentração de Íons de Hidrogênio , Compostos de Amônio/metabolismo
8.
J Hazard Mater ; 479: 135574, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39197278

RESUMO

Tire wear particles (TWPs) pollution is widely present in soil, especially in areas severely affected by traffic. Herein, regular variation of fungal biomass with TWPs was found in soils with different distances from the highway. In addition, the concentrations of benzothiazole compounds (BTHs), an important class of rubber vulcanization accelerators, were found to be positively correlated to the TWPs abundance. Sixty days' soil microcosm experiments were conducted to further confirm the adverse effect of TWPs and BTHs on soil fungi. TWPs spiking at 1000 mg/kg, a detectable level in the roadside, resulted in significant reduction of biomass and significant changes of soil fungal community structure, with Eurotium and Polyporales being the sensitive species. BTH+ 2-hydroxybenzothiazole (OHBT) (the dominant BTHs in soil) spiking at 200 ng/kg, the dose equivalent to 1000 mg/kg TWPs pollution, also caused a similar magnitude of soil fungal biomass reduction. Adonis demonstrated no significant difference of fungal community structure between TWPs and BTH+OHBT spiked soil, suggesting the adverse effect of TWPs on soil fungi may be explained by the act of BTHs. Pure culture using the representative soil fungi Eurotium and Polyporales also confirmed that BTHs were the main contributors to the adverse effect of TWPs on soil fungi.


Assuntos
Benzotiazóis , Fungos , Borracha , Microbiologia do Solo , Poluentes do Solo , Fungos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Biomassa
9.
Sci Rep ; 14(1): 15211, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956076

RESUMO

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Assuntos
Nanopartículas Metálicas , Prata , Microbiologia do Solo , Prata/química , Prata/farmacologia , Arábia Saudita , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Clima Desértico , Fungos/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
10.
Front Microbiol ; 15: 1404633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027108

RESUMO

Overgrazing and climate change are the main causes of grassland degradation, and grazing exclusion is one of the most common measures for restoring degraded grasslands worldwide. Soil fungi can respond rapidly to environmental stresses, but the response of different grassland types to grazing control has not been uniformly determined. Three grassland types (temperate desert, temperate steppe grassland, and mountain meadow) that were closed for grazing exclusion for 9 years were used to study the effects of grazing exclusion on soil nutrients as well as fungal community structure in the three grassland types. The results showed that (1) in the 0-5 cm soil layer, grazing exclusion significantly affected the soil water content of the three grassland types (P < 0.05), and the pH, total phosphorous (TP), and nitrogen-to-phosphorous ratio (N/P) changed significantly in all three grassland types (P < 0.05). Significant changes in soil nutrients in the 5-10 cm soil layer after grazing exclusion occurred in the mountain meadow grasslands (P < 0.05), but not in the temperate desert and temperate steppe grasslands. (2) For the different grassland types, Archaeorhizomycetes was most abundant in the montane meadows, and Dothideomycetes was most abundant in the temperate desert grasslands and was significantly more abundant than in the remaining two grassland types (P < 0.05). Grazing exclusion led to insignificant changes in the dominant soil fungal phyla and α diversity, but significant changes in the ß diversity of soil fungi (P < 0.05). (3) Grazing exclusion areas have higher mean clustering coefficients and modularity classes than grazing areas. In particular, the highest modularity class is found in temperate steppe grassland grazing exclusion areas. (4) We also found that pH is the main driving factor affecting soil fungal community structure, that plant coverage is a key environmental factor affecting soil community composition, and that grazing exclusion indirectly affects soil fungal communities by affecting soil nutrients. The above results suggest that grazing exclusion may regulate microbial ecological processes by changing the soil fungal ß diversity in the three grassland types. Grazing exclusion is not conducive to the recovery of soil nutrients in areas with mountain grassland but improves the stability of soil fungi in temperate steppe grassland. Therefore, the type of degraded grassland should be considered when formulating suitable restoration programmes when grazing exclusion measures are implemented. The results of this study provide new insights into the response of soil fungal communities to grazing exclusion, providing a theoretical basis for the management of degraded grassland restoration.

11.
Front Plant Sci ; 15: 1408272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855467

RESUMO

Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.

12.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898415

RESUMO

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Assuntos
Arachis , Microbiologia do Solo , Arachis/microbiologia , Arachis/genética , Micobioma , Fungos/fisiologia , Fungos/genética , Florida , Rizoma/microbiologia , Filogenia
13.
Sci Rep ; 14(1): 14160, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898096

RESUMO

Continuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities. Among them, B decreased the most. In the analysis of the composition and structure of the fungal community, it was found that the proportion of plant pathogens Nectriaceae decreased from 19.67% in CK to 5.63% in B, which greatly reduced the possibility of soil-borne diseases. In the analysis of the correlation between soil environmental factors and fungal communities, it was found that Filobasidiaceae had a strong correlation with TP and AP, and Erysiphaceae had a strong correlation with TK and AK. NO3--N and NH4+-N were the two environmental factors with the strongest correlation with fungal communities. The results of this study showed that rotation with other crops slowed down the process of soil fungi in tobacco-growing soil and changed the dominant species of soil fungi community. At the same time, crop rotation changed the diversity and richness of soil fungal community by changing the physical and chemical properties of soil.


Assuntos
Produtos Agrícolas , Fungos , Nicotiana , Microbiologia do Solo , Solo , Nicotiana/microbiologia , Nicotiana/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Solo/química , Agricultura/métodos , Biodiversidade
14.
Sci Total Environ ; 942: 173718, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38848925

RESUMO

Arbuscular mycorrhizal fungi (AMF) have a broad distribution and establish symbiotic relationships with vascular plants in tropical regions. They play a crucial role in enhancing plant nutrient absorption, mitigating pathogenic infections, and boosting the resilience of host plants to abiotic stresses, including drought under specific conditions. Many natural forests in Ethiopia are being replaced by monospecific plantations. However, the impact of these actions on AMF is unknown and, despite their ecological functions, AMF communities in various forest systems have not been thoroughly investigated. In this study, we assessed soil AMF communities in natural and plantation forests by DNA metabarcoding of the ITS2 rDNA region and assessed the influence of climate and environmental variables on the AMF community. In total, 193 AMF operational taxonomic units (OTUs), comprising nine families and 15 genera, were recorded. Glomerales was the dominant order (67.9 % of AMF OTUs) and Septoglomus fuscum, Diversispora insculpta, and Funneliformis mosseae were the dominant species. AMF were more abundant in natural forests than in plantation forests and the composition of AMF communities differed significantly from those of plantation forest. In plantation forests, soil pH, organic carbon, total nitrogen, and available phosphorus significantly influenced the composition of AMF communities, whereas in natural forest, electrical conductivity, annual rainfall, and cumulative rainfall before sample collection were significantly correlated with AMF. SIMPER analysis identified the AMF responsible for composition variances among different forest types, with the Glomeraceae family being the most significant contributor, accounting for nearly 60 % of the dissimilarity. Our findings further our understanding of the ecological niche function and the role of AMF in Ethiopia's natural forest systems and highlight the importance of prioritizing the sustainable development of degraded natural forests rather than plantations to ensure the preservation of habitats conducive to maintaining various AMF communities when devising conservation and management strategies.


Assuntos
Florestas , Micorrizas , Microbiologia do Solo , Árvores , Micorrizas/fisiologia , Etiópia , Árvores/microbiologia , Solo/química
15.
Mycobiology ; 52(2): 111-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690028

RESUMO

The fungal strain designated as KNUF-21-020, belonging to the genus Triangularia, was isolated from a soil sample collected in the Chungnam province, Korea. Phylogenetic analyses based on the concatenated nucleotide sequences of internal transcribed spacer regions and partial sequences of large subunit rRNA, beta-tubulin, and RNA polymerase II subunit genes revealed that the strain was grouped in a clade with Triangularia species. However, it occupied a distinct phylogenetic position. We also observed morphological differences between strain KNUF-21-020 and closely related species. Here, we provided detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetic analyses of the closely related species to support the novelty of this isolated species. The phylogenetic analyses and morphological observations indicate that the strain KNUF-21-020 represents a novel species in the genus Triangularia (family: Podosporaceae). We have designated this species as Triangularia manubriata sp. nov.

16.
Microorganisms ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792806

RESUMO

Revealing the biogeography and community assembly mechanisms of soil microorganisms is crucial in comprehending the diversity and maintenance of Pinus sylvestris var. mongolica forests. Here, we used high-throughput sequencing techniques and null model analysis to explore the distribution patterns and assembly processes of abundant, rare, and total fungal communities in P. sylvestris var. mongolica forests based on a large-scale soil survey across northern China. Compared to the abundant and total taxa, the diversity and composition of rare taxa were found to be more strongly influenced by regional changes and environmental factors. At the level of class, abundant and total taxa were dominated by Agaricomycetes and Leotiomycetes, while Agaricomycetes and Sordariomycetes were dominant in the rare taxa. In the functional guilds, symbiotrophic fungi were advantaged in the abundant and total taxa, and saprotrophic fungi were advantaged in the rare taxa. The null model revealed that the abundant, rare, and total taxa were mainly governed by stochastic processes. However, rare taxa were more influenced by deterministic processes. Precipitation and temperature were the key drivers in regulating the balance between stochastic and deterministic processes. This study provides new insights into both the biogeographical patterns and assembly processes of soil fungi in P. sylvestris var. mongolica forests.

17.
Braz J Microbiol ; 55(2): 1625-1634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652442

RESUMO

Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.


Assuntos
Biodiversidade , Mudança Climática , Fungos , Microbiologia do Solo , Regiões Antárticas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Ecossistema , Solo/química , Micobioma
18.
Fungal Biol ; 128(2): 1724-1734, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575246

RESUMO

The ectomycorrhizal fungi Tuber melanosporum Vittad. and Tuber aestivum Vittad. produce highly valuable truffles, but little is known about the soil fungal communities associated with these truffle species in places where they co-occur. Here, we compared soil fungal communities present in wild and planted truffle sites, in which T. melanosporum and T. aestivum coexist, in Mediterranean and temperate regions over three sampling seasons spanning from 2018 to 2019. We showed that soil fungal community composition and ectomycorrhizal species composition are driven by habitat type rather than climate regions. Also, we observed the influence of soil pH, organic matter content and C:N ratio structuring total and ectomycorrhizal fungal assemblages. Soil fungal communities in wild sites revealed more compositional variability than those of plantations. Greater soil fungal diversity was found in temperate compared to Mediterranean sites when considering all fungal guilds. Ectomycorrhizal diversity was significantly higher in wild sites compared to plantations. Greater mould abundance at wild sites than those on plantation was observed while tree species and seasonal effects were not significant predictors in fungal community structure. Our results suggested a strong influence of both ecosystem age and management on the fungal taxa composition in truffle habitats.


Assuntos
Micobioma , Micorrizas , Ecossistema , Solo , Árvores , Microbiologia do Solo
19.
Int Microbiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506948

RESUMO

Ten fungal species were isolated from soil in the Western Desert and Wadi El-Natron in Egypt. All fungal isolates were morphologically recognized down to the species level. Methanol extracts of fungal mycelia and ethyl acetate extracts of culture filtrate from the isolated fungi were evaluated for antimicrobial activity against six pathogenic bacteria and one pathogenic yeast (Candida albicans ATCC20231). Only ethyl acetate extracts of Fusarium circinatum, Aspergillus niger, and Aspergillus terreus culture filtrates showed significant antimicrobial activity against the majority of the investigated pathogens. The culture filtrate extract of Aspergillus niger exhibited notable cytotoxicity towards the breast cancer (MCF-7) cell line, with the lowest detected IC50 recorded at 8 µg/µl. Whereas Fusarium circinatum and Aspergillus terreus had IC50s of 15.91 µg/µl and 18 µg/µl, respectively. A gas chromatography-mass spectroscopy (GC-MS) investigation of A. niger's potent extract revealed 23 compounds with different biological activities. Glycidyleoleate was found to be the main extract component. Aspergillus niger extract was chosen to study its possible cytotoxic mechanism. The extract was found to induce apoptosis and cell cycle arrest at the < 2n stage. Despite a significant increase in caspases 8 and 9, the production levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) have shown a significant decrease. The high interaction of glycidyleoleate against the studied cytokines' binding receptors was demonstrated via docking studies. In conclusion, the available data revealed that the culture filtrate extract of A. niger possesses promising antimicrobial, cytotoxic, and immunomodulatory properties.

20.
3 Biotech ; 14(3): 79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371901

RESUMO

The diversity, composition, and abundance of soil fungi from three sacred groves in Kerala, namely Iringole kavu of Ernakulam District, Kollakal Thapovanam of Alappuzha District, and Poyilkavu of Kozhikode District were analysed using Metagenomics analysis and Illumina sequencing. A total of 30,584, 78,323, and 55,640 reads were obtained from these groves, respectively. Ascomycota constitutes over 96% of the total fungi, making it the most abundant phylum, followed by Mortierellomycota, Basidiomycota, Chytridiomycota, and Rozellomycota. These phyla were subdivided into 20 classes, 40 orders, 83 families, 119 genera, and 135 species, while 1269 OTUs remained unidentified at the species level. Eurotiomycetes predominates the class, while the genus Talaromyces from the family Trichomaceae dominates the genera. Neocarmospora falciformis, Trichoderma lixii, and Candida ethanolic are the most abundant fungal species. Diversity analysis shows that Kollakal Thapovanam is rich in fungal species, while Poyilkavu is rich in biodiversity, with a high degree of dominance. Several species were found only in a particular grove and were absent in others and vice-versa, indicating high fungal specificity. Therefore, fungi have to be preserved in their original habitat. The Principal Coordinate Analysis revealed that each grove is distinct highlighting the importance of preserving the unique diversity of each sacred grove. In conclusion, this research provides valuable information about the soil fungal genera in their natural habitat. It emphasizes the need for more systematic research to understand the actual diversity and ecological role of fungi in sacred groves. This study is the first of its kind to analyse and compare soil fungal diversity in sacred groves using the metagenomics approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA