Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Environ Monit Assess ; 196(9): 785, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098961

RESUMO

Mapping of soil nutrient parameters using experimental measurements and geostatistical approaches to assist site-specific fertiliser advisories is anticipated to play a significant role in Smart Agriculture. FarmerZone is a cloud service envisioned by the Department of Biotechnology, Government of India, to provide advisories to assist smallholder farmers in India in enhancing their overall farm production. As a part of the project, we evaluated the soil spatial variability of three potato agroecological zones in India and provided soil health cards along with field-specific fertiliser recommendations for potato cultivation to farmers. Specifically, 705 surface samples were collected from three representative potato-growing districts of Indian states (Meerut, UP; Jalandhar, Punjab and Lahaul and Spiti, HP) and analysed for soil parameters such as organic carbon, macronutrients (NPK), micronutrients (Zn, Fe, Mn, and Cu), pH, and EC. The soil parameters were integrated into a geodatabase and subjected to kriging interpolation to create spatial soil maps of the targeted potato agroecological zones through best-fit experimental semivariograms. The spatial distribution showed a deficiency of soil organic carbon in two studied zones and available nitrogen among all studied zones. The available phosphorus and potassium varied among the agroecological zones. The micronutrient levels were largely sufficient in all the zones except at a few specific sites where nutrient advisories are recommended to replenish. The general management strategies were recommended based on the nutrient status in the studied area. This study clearly supports the significance of site-specific soil analytics and interpolated spatial soil mapping over any targeted agroecological zones as a promising strategy to deliver reliable advisories of fertiliser recommendations for smart farming.


Assuntos
Agricultura , Monitoramento Ambiental , Fertilizantes , Solo , Solanum tuberosum , Índia , Solo/química , Agricultura/métodos , Monitoramento Ambiental/métodos , Fósforo/análise , Nitrogênio/análise , Poluentes do Solo/análise , Nutrientes/análise
2.
J Basic Microbiol ; : e2400225, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113273

RESUMO

The integrated application of inorganic fertilizers, organic fertilizers, and biofertilizers helps sustain the nutrient pool and benefits the soil quality, thereby boosting plant health. The effect of different combinations of biofertilizers (consortium biofertilizer [CBF]-non-rhizobial PGPR), inorganic fertilizers, and organic fertilizers on soil health, growth, and yield of cowpea was evaluated by conducting a field experiment. The application of N100 FYM + CBF resulted in significantly higher populations of bacteria, fungi, PSB, and diazotroph, as well as soil dehydrogenase and alkaline phosphatase enzyme activities. However, the application of N100 FYM recorded a significantly higher actinomycetes population. The application of N100 FYM + CBF resulted in significantly higher soil OC, available nitrogen, phosphorus, and potassium. The soil pH was recorded to be highest in control, and soil EC was recorded to be lowest in control. The plant uptake of nitrogen, phosphorus, and potassium was significantly higher with N50 FYM + NP50 + CBF. The root-shoot biomass, number of leaves, nodules/plant, number of pods/plants, pod biomass, pod length, and pod width were significantly higher in treatment having N50 FYM + NP50 + CBF. However, the height of the plant, number of branches, and biomass of leaves were highest in treatment with N25 FYM + NP75 + CBF. The pod and stover yield were significantly higher in treatment with N50 FYM + NP50 + CBF. The results showed that the integrated application of non-rhizobial PGPR along with organic and inorganic fertilizer helps to improve overall soil health, quality, and plant growth of forage cowpea contributing to an increase in crop yield.

3.
Curr Res Microb Sci ; 7: 100251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165409

RESUMO

The adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices. Additionally, this review discusses the future prospects of biofertilizers, emphasizing the ongoing advancements in biotechnology and formulation techniques that are expected to enhance their efficacy and applicability. Furthermore, this article provides insights into strategies for the successful acceptance of biofertilizers among farmers, including the importance of quality control, assurance, and education initiatives to raise awareness about their benefits and overcome barriers to adoption. By synthesizing the current research findings and industrial developments, this review offers valuable guidance for stakeholders seeking to exploit the potential of biofertilizers or beneficial microbes to promote soil health, ensure sustainable crop production, and addressing the challenges of modern agriculture.

4.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149882

RESUMO

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Assuntos
Oligoquetos , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/efeitos adversos , Animais , Solo/química , Microplásticos/análise , Microplásticos/toxicidade , Gases de Efeito Estufa/análise , Nanopartículas/análise , Produtos Agrícolas/crescimento & desenvolvimento
5.
Environ Pollut ; 360: 124619, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067738

RESUMO

Biochar (BC) has been proven effective in promoting the production of safety food in cadmium (Cd)-polluted soil and the impact can be further enhanced through interaction with compost (CM). However, there existed unclear impacts of biochar with varying particle sizes in conjunction with compost on microbiome composition, rhizosphere functions, and soil health. Hence, in this study, two bulk-biochar derived from wood chips and pig manure were fabricated into nano-biochar using a ball-milling method. Subsequently, in a field experiment, the root-associated bacterial community and microbial functions of lettuce were evaluated in respond to Cd-contaminated soil remediated with nano/bulk-BCCM. The results showed that compared to bulk-BCCM, nano-BCCM significantly reduced the Cd concentration in the edible part of lettuce and the available Cd in the soil. Both nano-BCCM and bulk-BCCM strongly influenced the composition of bacterial communities in the four root-associated niches, and enhanced rhizosphere functions involved in nitrogen, phosphorus, and carbon cycling, as well as the relative abundance and biodiversity of keystone modules in rhizosphere soil. Furthermore, soil quality index analysis indicated that nano-BCCM exhibited greater potential than bulk-BCCM in maintaining soil health. The data revealed that nano-BCCM could regulate the Cd concentration in lettuce shoot by promoting microbial biodiversity of keystone modules in soil-root continuum and rhizosphere bacterial functions. These findings suggest that nano-biochar compost associations can be a superior strategy for enhancing microbial functions, maintaining soil health, and ensuring crop production safety in the Cd-contaminated soil compared to the mix of bulk-biochar and compost.

6.
Sci Total Environ ; 948: 174869, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038670

RESUMO

Healthy soils provide valuable ecosystem services (ES), but soil contamination can inhibit essential soil functions (SF) and pose risks to human health and the environment. A key advantage of using gentle remediation options (GRO) is the potential for multifunctionality: to both manage risks and improve soil functionality. In this study, an accessible, scientific method for soil health assessment directed towards practitioners and decision-makers in contaminated land management was developed and demonstrated for a field experiment at a DDX-contaminated tree nursery site in Sweden to evaluate the relative effects of GRO on soil health (i.e., the 'current capacity' to provide ES). For the set of relevant soil quality indicators (SQI) selected using a simplified logical sieve, GRO treatment was observed to have highly significant effects on many SQI according to statistical analysis due to the strong influence of biochar amendment on the sandy soil and positive effects of nitrogen-fixing leguminous plants. The SQI were grouped within five SF and the relative effects on soil health were evaluated compared to a reference state (experimental control) by calculating quantitative treated-SF indices. Multiple GRO treatments are shown to have statistically significant positive effects on many SF, including pollutant attenuation and degradation, water cycling and storage, nutrient cycling and provisioning, and soil structure and maintenance. The SF were in turn linked to soil-based ES to calculate treated-ES indices and an overall soil health index (SHI), which can provide simplified yet valuable information to decision-makers regarding the effectiveness of GRO. The experimental GRO treatment of the legume mix with biochar amendment and grass mix with biochar amendment are shown to result in statistically significant improvements to soil health, with overall SHI values of 141 % and 128 %, respectively, compared to the reference state of the grass mix without biochar (set to 100 %).


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Suécia , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Árvores , Monitoramento Ambiental/métodos , Carvão Vegetal
7.
Sci Total Environ ; 947: 174652, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992377

RESUMO

The ability of soil to sequester carbon and reduce atmospheric CO2 concentrations is limited and depends on the soil minerals and their interaction with the microbiota. Microbial activities are closely associated with the types and amounts of soil organic matter (SOM) and clay minerals that have functional groups that interact with energy in Vis NIR-SWIR and Mid-IR wavelengths. The main objective of this research was to determine, based on these spectral ranges, the relation between mineralogical and organic compounds, as their sequestration and specialization in soils from Brazil. It was possible to map microbiological activity by spectral transfer functions and digital soil mapping reaching R2 from 0.77 to 0.85. Multiple regression equations were constructed to quantify enzymatic activity, microbial biomass carbon (MBC), particulate organic matter (POM), and resistant forms of carbon, and SOM associated with the mineral fraction (MAOM). All these properties were detected by specific bands obtained with the recursive feature elimination (RFE) algorithm, reaching correlations from 0.64 to 0.98 in specific ranges. The prediction model of the carbon sequestration potential was adjusted with microbiological and mineralogical variables from Vis-NIR-SWIR and the Mid-IR spectral range. A SARAR double autoregressive model was adjusted with r 0.61 and to a spatial error model (SEM) with r 0.7. The explanatory variables were associated with kaolinite, hematite, goethite, gibbsite, and the abundance of fungi, actinomycetes, vesico-arbuscular mycorrhizal fungi, enzymatic activity of beta-glucosidase, urease and phosphatase, and POM. Among the microbiological variables, the general abundance of fungi was the most important, in contrast to enzymatic activity that was the least important. The interaction between the different maps constructed and historical land use allowed the identification of areas that contribute to sequestering new carbon and could be the key to climate change mitigation strategies.


Assuntos
Sequestro de Carbono , Microbiologia do Solo , Solo , Solo/química , Minerais/análise , Brasil , Carbono/análise , Monitoramento Ambiental/métodos
8.
Heliyon ; 10(12): e32098, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975210

RESUMO

Agroecology is a sustainable farming method that has the potential to revolutionize the global agricultural sector by promoting cleaner and more environmentally friendly practices. However, the question of how to effectively transition to a sustainable agroecology system remains a topic of debate, particularly in developing economies. In many developing countries, subsistence farming plays a crucial role in supporting the livelihoods of countless households. Therefore, it is essential to explore the connection between food self-provisioning and the shift towards agroecology. Using primary data from rural Nigeria and by applying an ordered logistic regression, the study demonstrates that when farmers are primarily dependent on their own produce for sustenance, there is a natural inclination towards methods ensuring long-term soil health and ecological balance. We observed that self-provisioning leads to a 10.9 % increase in agroecology transition, and this result was statistically significant (P-value 0.001). This paradigm not only promotes sustainable agricultural practices but also underscores a holistic approach where agriculture coexists harmoniously with nature. As the global challenges of climate change and increasing food demand loom large, understanding and supporting these farmer-driven solutions become paramount. The results beckon policymakers and stakeholders to frame strategies grounded in farmers' intrinsic motivations, ensuring a sustainable agricultural future that is ecologically viable, culturally resonant, and economically beneficial.

9.
Environ Res ; 259: 119531, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960358

RESUMO

Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.

10.
Front Plant Sci ; 15: 1414193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984154

RESUMO

Trichoderma spp. is known for its ability to enhance plant growth and suppress disease, but the mechanisms for its interaction with host plants and pathogens remain unclear. This study investigated the transcriptomics and metabolomics of peanut plants (Arachis hypogaea L.) inoculated with Trichoderma harzianum QT20045, in the absence and presence of the stem rot pathogen Sclerotium rolfsii JN3011. Under the condition without pathogen stress, the peanut seedlings inoculated with QT20045 showed improved root length and plant weight, increased indole acetic acid (IAA) production, and reduced ethylene level, with more active 1-aminocyclopropane-1-carboxylate acid (ACC) synthase (ACS) and ACC oxidase (ACO), compared with the non-inoculated control. Under the pathogen stress, the biocontrol efficacy of QT20045 against S. rolfsii was 78.51%, with a similar effect on plant growth, and IAA and ethylene metabolisms to the condition with no biotic stress. Transcriptomic analysis of peanut root revealed that Trichoderma inoculation upregulated the expression of certain genes in the IAA family but downregulated the genes in the ACO family (AhACO1 and AhACO) and ACS family (AhACS3 and AhACS1) consistently in the absence and presence of pathogens. During pathogen stress, QT20045 inoculation leads to the downregulation of the genes in the pectinesterase family to keep the host plant's cell wall stable, along with upregulation of the AhSUMM2 gene to activate plant defense responses. In vitro antagonistic test confirmed that QT20045 suppressed S. rolfsii growth through mechanisms of mycelial entanglement, papillary protrusions, and decomposition. Our findings highlight that Trichoderma inoculation is a promising tool for sustainable agriculture, offering multiple benefits from pathogen control to enhanced plant growth and soil health.

11.
Toxics ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058109

RESUMO

Unplanned water reuse for crop irrigation may pose a global health risk due to the entry of contaminants into the food chain, undesirable effects on crop quality, and impact on soil health. In this study, we evaluate the impact derived from the co-occurrence of pharmaceuticals (Phs), trace metals (TMs), and one metalloid within the water-soil-plant continuum through bioassay experiments with Lactuca sativa L. Results indicate that the co-occurrence of Phs and TMs has synergistic or antagonistic effects, depending on target contaminants and environmental compartments. Complex formations between drugs and TMs may be responsible for enhanced sorption onto the soil of several Phs and TMs. Concerning plant uptake, the co-occurrence of Phs and TMs exerts antagonistic and synergistic effects on carbamazepine and diazepam, respectively. With the exception of Cd, drugs exert an antagonistic effect on TMs, negatively affecting their uptake and translocation. Drug contents in lettuce edible parts do not pose any threat to human health, but Cd levels exceed the maximum limits set for leafy vegetable foodstuffs. Under Ph-TM conditions, lettuce biomass decreases, and a nutrient imbalance is observed. Soil enzyme activity is stimulated under Ph-TM conditions (ß-galactosidase) and Ph and Ph-TM conditions (urease and arylsulfatase), or it is not affected (phosphatase).

12.
J Environ Manage ; 366: 121882, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025010

RESUMO

Based on current evidence and established critical thresholds for soil degradation indicators, it is concerning that over 60-70% of European soils are unhealthy due to unsustainable management and the impact of climate change. Despite European and national efforts to improve soil health, significant gaps remain. The proposal for a Soil Monitoring and Resilience Law, to be implemented by the European Union, seeks to establish a framework for soil monitoring and promote sustainable management practices to achieve healthy soils by 2050. This requires extensive data collection and soil monitoring systems to accurately estimate soil health across Europe, considering the diversity of soil types, climates, and land uses. To establish a framework for soil monitoring, we must understand the site-specific status of soil and the ranges of soil health indicators across specific pedoclimatic regions. In our study, we evaluated the soil status in agricultural areas in Denmark using soil health indicators and a site-specific benchmarking approach. We compiled nationally representative datasets, combining point and model-informed data of soil parameters such as organic carbon content, bulk density, pH, electrical conductivity, clay-to-soil organiccarbon ratio, water erosion, and nitrogen leaching. By categorizing Danish agricultural soils into monitoring units based on textural classes, landscape elements, and wetland types, we calculated benchmarks for these indicators, considering different cropping systems. Our approach provided detailed point-based results and a spatially explicit overview of the status of soil health indicators in Denmark. We identified areas where soil deviates from the benchmarks of different indicators. Such deviations might indicate soil functions operating outside the normal range, posing potential threats to soil health. This proposed framework could support the establishment of a baseline for assessing the directionality of future changes in soil health. Moreover, it is adaptable for implementation by other countries to support assessments of soil health.


Assuntos
Benchmarking , Monitoramento Ambiental , Solo , Solo/química , Dinamarca , Monitoramento Ambiental/métodos , Mudança Climática , Agricultura , Conservação dos Recursos Naturais
13.
Biodegradation ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985381

RESUMO

Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO2, CH4, and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.

14.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976075

RESUMO

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Oligoquetos , Reprodução , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Metais Pesados/toxicidade , Animais , Poluentes do Solo/toxicidade , Reprodução/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Ensaio Cometa , Espectroscopia de Infravermelho com Transformada de Fourier , Dano ao DNA , Solo/química
15.
Sci Rep ; 14(1): 15555, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969735

RESUMO

To meet the growing international demand for aromatic rice, this study, conducted at Uttar Banga Krishi Viswavidyalaya in Cooch Behar, West Bengal, aimed to enhance the yield and quality of the 'Tulaipanji' rice cultivar through advanced establishment methods and the use of organic nutrients over two years. The research tested three planting techniques: mechanical transplanting, wet direct seeding (using a drum seeder), and traditional methods, alongside four nutrient management strategies: vermicompost, farmyard manure, a mix of both, and conventional fertilizers. Findings revealed that mechanical transplanting significantly increased yield by over 31.98% and 71.05% compared to traditional methods and wet direct seeding, respectively. Using vermicompost alone as a nutrient source not only boosted yields by 21.31% over conventional fertilizers but also enhanced the rice's nutritional value and cooking quality. Moreover, soils treated with vermicompost showed higher dehydrogenase activity, indicating better soil health. Economically, mechanical transplanting with vermicompost was the most beneficial, yielding the highest net returns and benefit-cost ratios in both years studied. This approach presents a viable model for improving the sustainability of aromatic rice production globally, emphasizing the economic and environmental advantages of adopting mechanical planting techniques and organic fertilization methods.


Assuntos
Fertilizantes , Valor Nutritivo , Oryza , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fertilizantes/análise , Solo/química , Agricultura/métodos , Produção Agrícola/métodos
16.
Chemosphere ; 363: 142784, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971447

RESUMO

Cadmium (Cd) in paddy soil poses significant risks to humans due to its strong biological migration and toxicity. Chinese milk vetch (MV) is commonly used as green manure in the paddy fields of southern China and its potential to decrease the availability of Cd has been identified. Nevertheless, the effects of MV combined with lime materials (lime, L; limestone, LS) on Cd availability, soil properties, enzyme activity and comprehensive benefits are still not fully understood in double-cropping rice system. A field study was conducted to investigate these changes. The results indicated that all treatments notably decreased soil available Cd (Avail-Cd) by 19.3-44.3% and 14.9-43.1% during early and late rice, compared with CK. Moreover, the Cd fractions transformed to more stable forms. Compared to CK, all treatments reduced brown rice Cd content by 34.6-64.2% and 12.7-52.5% during the two periods. Furthermore, the translocation factors root to shoot, as well as shoot to brown rice, decreased. The combination led to improvements in soil properties, soil enzyme activity. Meantime, Cd in iron-manganese plaque (IMP) decreased by 31.9-51.1% and 29.0-42.7% respectively during two periods in amendments treatments. Soil pH and DOC were more important factors for Cd bioavailability than other properties. Additionally, rice Cd uptake was positively correlated with Cd in IMP. Enzyme activity exhibited a negative correlation with soil active Cd. Partial Least Squares Path Model (PLS-PM) indicated that the mitigation of Cd pollution helped to improve soil enzyme activity. Grey correlation analysis (GRA) indicated that MVLS showed the best comprehensive benefits in soil-plant system. Overall, the combination of MV and lime materials could reduce Cd availability, enhance soil properties and enzyme activity. And this could be strengthened by the combination. These findings will provide valuable insights for Cd-contaminated soil remediation.


Assuntos
Cádmio , Compostos de Cálcio , Oryza , Óxidos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Cádmio/metabolismo , Solo/química , Compostos de Cálcio/química , Óxidos/química , China , Agricultura/métodos , Esterco , Recuperação e Remediação Ambiental/métodos
17.
Sci Total Environ ; 945: 173903, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880154

RESUMO

Quantifying changes in soil organic carbon (SOC) stocks within croplands across a broad spatiotemporal scale in response to anthropogenic and environmental factors offers valuable insights for sustainable agriculture aimed to improve soil health. Using a validated and widely used soil carbon model RothC, we simulated the SOC dynamics across intensive croplands in China that support ∼22 % of the global population using only 7 % of the global cropland area. The modelling results demonstrate that the optimized RothC effectively captures SOC dynamics measured across 29 long-term field trials during 40 years. Between 1980 and 2020, the average SOC at the top 30 cm in croplands increased from 40 Mg C ha-1 to 49 Mg C ha-1, resulting in a national carbon sequestration of 1100 Tg C, with an average carbon sequestration rate of 27 Tg C yr-1. The annual increase rate of SOC (relative to the SOC stock of the previous year), starting at <0.2 % yr-1 in the 1980s, reached around 0.4 % yr-1 in the 1990s and further rose to about 0.8 % yr-1 in the 2000s and 2010s. Notably, the eastern and southern regions, comprising about 40 % of the croplands, contributed about two-thirds of the national SOC gain. In northeast China, SOC slightly decreased from 58 Mg C ha-1 in 1980 to 57 Mg C ha-1 in 2020, resulting in a total decline of 28 Tg C. Increased organic C inputs, particularly from the straw return, was the crucial factor in SOC increase. Future strategies should focus on region-specific optimization of straw management. Specifically, in northeast China, increasing the proportion of straw returned to fields can prevent further SOC decline. In regions with SOC increase, such as the eastern and southern regions, diversified straw utilization (e.g., bioenergy production), could further mitigate greenhouse gas emissions.

18.
Waste Manag ; 186: 153-165, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905905

RESUMO

Population growth has driven an increased demand for solid construction materials, leading to higher amounts of construction and demolition waste (C&DW). Efficient strategies to manage this waste include reduction, reuse, and recycling. Technosols-soils engineered from recycled waste-can potentially help with environmental challenges. However, there is a critical need to explore the potential of Technosols constructed with C&DW for land reclamation, through the growth of native vegetation. The objective of this study was to investigate this potential by studying two Brazilian native tree species (Guazuma ulmifolia and Piptadenia gonoacantha). Technosols were created using C&DW, with and without organic compost and a liquid biofertilizer. A soil health index (SHI) was applied to evaluate the soil quality regarding physical, chemical, and biological indicators of Technosols compared to a control soil (Ferralsol). The results showed that P. gonoacantha plants presented the same height and total biomass in all treatments, while G. ulmifolia plants exhibited greater height and total biomass when grown in Technosols. The enhanced plant development in the Technosols was primarily associated with higher cation exchangeable capacity and nutrients concentration in plant tissues. Technosols with added compost provided higher fertility and total organic carbon. Additionally, Technosols presented higher SHI (∼0.68) compared to control (∼0.38) for both studied species. Our experiment reveals that construction and demolition waste (C&DW) have significant potential to form healthy Technosols capable of supporting the growth of native Brazilian trees. This approach offers a promising alternative for addressing C&DW disposal challenges while serving as a nature-based solution for land reclamation.


Assuntos
Materiais de Construção , Reciclagem , Solo , Solo/química , Reciclagem/métodos , Brasil , Compostagem/métodos , Biomassa , Gerenciamento de Resíduos/métodos , Árvores , Resíduos Industriais
19.
Artigo em Inglês | MEDLINE | ID: mdl-38877191

RESUMO

Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.

20.
Sci Rep ; 14(1): 14355, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906908

RESUMO

Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.


Assuntos
Microbiologia do Solo , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Solo/química , Agricultura/métodos , Rizosfera , Microbiota , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Ecossistema , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Biodiversidade , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/genética , Fungos/classificação , Quênia , Produção Agrícola/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA