Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Sci Justice ; 64(5): 572-580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277339

RESUMO

Previous literature has established that recovering heat damaged body fluids is possible, however with little investigation into the effect of accelerants used in initiating arson fires. This study therefore aimed to determine whether presumptive blood detection was affected by heat damage resulting from accelerant facilitated fires. Another objective was to examine various techniques for removing soot, which is a noted barrier to blood detection. The study focused on blood deposited on household flooring materials, one porous and one nonporous surface: carpet and tile respectively. Samples were burned with butane, petrol, and kerosene then presumptively tested using the Kastle Meyer colourimetric blood detection test. Testing was then repeated following soot removal by either wiping, scraping, or using liquid latex. The "strength" of positive detections was evaluated using a scale based on reaction speed and colour intensity. Results demonstrated that accelerants weakened detection strength, although nearly all samples tested positive overall, and the impact of each accelerant on both surface types was largely similar. It was also discovered that soot removal improved the strength of blood detection results in approximately 69% of carpet and 47% of tile samples, with wiping being the superior method on both surface types. Consequently, introducing this investigative step may be critical to maximizing blood evidence recovery in arson casework. These findings indicate the worth in recovering severely burned items, particularly for evidence as crucial as blood.


Assuntos
Incêndios , Pisos e Cobertura de Pisos , Fuligem , Humanos , Colorimetria , Manchas de Sangue , Querosene
2.
Molecules ; 29(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39274850

RESUMO

The formation of soot and NOx in ammonia/ethylene flames with varying ammonia ratios was investigated through experimental and numerical analysis. The spatial distribution of the soot volume fraction and NOx concentrations along the flame central line were measured, and the mechanism of soot and NOx formation during ammonia/ethylene co-combustion was analyzed using CHEMKIN 17.0. The experimental results indicated that the soot volume fraction decreases with an increase in ammonia ratio, with the soot peak concentration occurring in the upper region of the flame. The distribution of NOx is complex. In the initial part of the flame, a higher concentration of NOx is generated, and the lower the ammonia ratio, the higher the concentration of NOx. As the combustion process progresses, the concentration of NOx initially decreases and then subsequently increases rapidly, with higher ammonia ratios leading to higher concentrations of NOx. The addition of ammonia results in a decrease in CH3, C2H2, and C3H3, and an increase in CN concentration. This leads to a transformation of carbon atoms within the combustion system, reducing the available carbon for soot formation and suppressing its generation. A higher ammonia ratio increases the likelihood that NH3 will be oxidized to N2, as well as increasing the probability that any generated NO will undergo reduction to N2 through the action of the free radicals NH2 and NH.

3.
Environ Sci Technol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39323293

RESUMO

Aircraft contrails, formed largely on soot particles in current flights, are important for aviation's non-CO2 climate impact. Here we show that the activation of nonvolatile soot particles during contrail formation is likely determined by the sizes of primary soot particles rather than the effective sizes of soot aggregates as assumed in previous studies, which can explain less-than-unity fractions of soot particles forming contrail ice particles as recently observed during ECLIF (Emission and CLimate Impact of alternative Fuels) campaigns. The smaller soot primary sizes compared to aggregate sizes delay the onset of contrail ice formation, increase the maximum plume supersaturation reached in the contrail plume, and thus increase the probability of small volatile particles contributing to the total contrail ice particle number. This study suggests that the range of conditions for volatile plume particles to contribute significantly to the contrail ice number budget is wider than previously thought. As the aviation industry is moving toward sustainable aviation fuel and/or lean-burning engine technology, which is expected to reduce not only the emission index of nonvolatile soot particles but also the sizes of primary soot particles, this study highlights the need to better understand how the combined changes may affect contrail formation, contribution of volatile particles, and climate impacts.

4.
Environ Sci Technol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255235

RESUMO

Soot, primarily composed of elemental carbon (EC) and organic carbon (OC), is ubiquitous in PM2.5. In the atmosphere, the heterogeneous interaction between NO2 and soot is not only an important pathway driving soot aging but also of central importance to nitrous acid (HONO) formation. It is commonly believed that the surface redox reaction between reductive OC and NO2 dominates the night aging of soot and the conversion of NO2 to HONO. However, completely differing from the currently popular explanation, we find here that the redox reaction between EC and NO2 can also drive the conversion of NO2 to HONO during soot aging. By combining in situ experiments with density functional theory (DFT) calculations, we proposed that the surface carbon vacancy defects on graphite/graphene-like EC should be a type of potential primary adsorption and reactive sites inducing the heterogeneous reduction of NO2. We suggested a new mechanism that NO2 is reduced to form HONO on surface vacancy defects through the splitting of H2O molecules, and the carbon atoms adjacent to surface vacancy are simultaneously oxidized to form hydroxyl-functionalized EC. This novel finding provides insights into the chemical mechanism driving the NO2-to-HONO conversion and rapid soot aging, which expands our knowledge of the heterogeneous chemistry of soot in the atmosphere.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39225927

RESUMO

In the present paper, activated nano-carbon soot is derived from atmospheric flame combustion of thymol-mustard oil followed by activation with potassium hydroxide (KOH) to produce micro- and mesoporous interiors. Different forms of activated nano-carbon soot are produced by using different weight percentage ratios 1:1, 1:3, and 1:5 of precursor carbon soot (CS) to KOH and named CS11, CS13, and CS15, respectively. An increase in specific surface area and average pore volume is observed with an increase in the amount of KOH with the hierarchical network having balanced micropores as well as mesopores in CS15. The electrochemical performance of prepared activated nano-carbon soot is further investigated by the fabrication of a symmetric electric double-layer solid-state supercapacitor (SC) device utilizing a 6 M KOH electrolyte. The CS15-based device displays the highest specific capacitance (Csp) of 226.20 F/g at a current density of 0.5 A/g with energy density (Ed) 31.42 Wh/kg at a power density (Pd) of 250 W/kg. The Csp, Ed, and Pd are found to be higher than activated nano-carbon soot reported in the literature. Further, three-coin cells are fabricated using CS15 which are tested in series combination with yellow light emitting diode (LED) and are found to be able to glow LED for ~ 5 min 25 s.

6.
Environ Sci Technol ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347567

RESUMO

Photooxidation of polycyclic aromatic hydrocarbons (PAHs), which are widely observed in atmospheric particulate matter (PM), largely determines their atmospheric fate. In the environment, PAHs are highly complex in chemical composition, and a great variety of PAHs tend to co-occur. Despite extensive investigation on the photochemical behavior of individual PAH molecules, the photochemical interaction among these coexisting PAHs is still not well understood. Here, we show that during photooxidation, there is a strong photochemical synergistic effect among PAHs extracted from soot particles. We find that neither small PAHs with low molecular weights of 200-350 Da and 4-8 aromatic rings (named PAHsmall) nor large PAHs with high molecular weights of 350-600 Da and 8-14 aromatic rings (named PAHlarge) undergo photooxidation under red-light irradiation (λ = 648 nm), even though PAHlarge can absorb light with this wavelength. Interestingly, when PAHlarge is mixed with PAHsmall, substantial photooxidation is observed for both PAHlarge and PAHsmall. Comparisons of in situ infrared (IR), high-resolution mass spectrometry, and electron paramagnetic resonance analysis indicate that the presence of PAHsmall inhibits the light quenching effect arising from the π-π stacking of PAHlarge. This leads to the formation of singlet oxygen (1O2), which initiates the photooxidation. Our findings reveal a new mechanism for the photooxidation of PAHs and suggest that complex atmospheric PAHs exhibit distinct photoreactivity from simple systems.

7.
J Hazard Mater ; 479: 135606, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191016

RESUMO

The particulate matter and soluble organic fraction emitted by diesel engine are hazardous to environment and human health. Exploring the effect mechanism of soluble organic fraction on soot oxidation is beneficial for reducing the emissions. In this study, the effects of four different types of soluble organic fractions on the soot oxidation activity and physicochemical properties are investigated. The results show that the attachment of oxygen-containing soluble organic fractions enhances the soot oxidation and reduces the peak characteristic temperature. However, the low volatility soluble organic fractions without oxygen element inhibit soot oxidation. Additionally, the high volatility soluble organic fractions without oxygen element elicit limited effects on soot oxidation. the contents of aliphatic C-H functional groups, carbonyl CO functional groups, and carboxylic acid O-CO functional groups significantly increase after adding oxygen-containing soluble organic fractions, while the limited increase in functional groups is observed in soluble organic fractions without oxygen element. Solid soluble organic fractions adhere to soot particles in the form of small particles, leading a reduction in the initial particle size distribution, while liquid soluble organic fractions exhibit block and chain shapes around the soot particles, which makes the initial particle size distribution increasing. Moreover, the attachment of all soluble organic fractions disrupts the surface order of soot particle, leading to a decrease in soot graphitization. This study is beneficial for revealing the interaction mechanism between soot and soluble organic fractions.

8.
Sci Total Environ ; 951: 175727, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181261

RESUMO

Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses. This study explores robust methods for generating reference UFP to understand these mechanisms and perform toxicological tests. Two types of combustion-related UFP with similar elemental carbon cores and physical properties but different organic loads were generated and characterized. Human alveolar epithelial cells were exposed to these UFP at the air-liquid interface, and several toxicological endpoints were measured. UFP were generated using a miniCAST under fuel-rich conditions and immediately diluted to minimize agglomeration. A catalytic stripper and charcoal denuder removed volatile gases and semi-volatile particles from the surface. By adjusting the temperature of the catalytic stripper, UFP with high and low organic content was produced. These reference particles exhibited fractal structures with high reproducibility and stability over a year, maintaining similar mass and number concentrations (100 µg/m3, 2.0·105 #/cm3) and a mean particle diameter of about 40 nm. High organic content UFP had significant PAH levels, with benzo[a]pyrene at 0.2 % (m/m). Toxicological evaluations revealed that both UFP types similarly affected cytotoxicity and cell viability, regardless of organic load. Higher xenobiotic metabolism was noted for PAH-rich UFP, while reactive oxidation markers increased when semi-volatiles were stripped off. Both UFP types caused DNA strand breaks, but only the high organic content UFP induced DNA oxidation. This methodology allows modification of UFP's chemical properties while maintaining comparable physical properties, linking these variations to biological responses.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Humanos , Material Particulado/toxicidade , Fuligem/toxicidade , Tamanho da Partícula , Testes de Toxicidade , Exposição por Inalação
9.
J Environ Manage ; 367: 121895, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059310

RESUMO

The article presents a method for obtaining catalytic systems: SiO2-Fe2O3, SiO2-Fe2O3-Fe and verification of their catalytic properties in the oxidation process of technical soot N550. The process of immobilization of Fe3+ ions on microsilica-SiO2 was investigated in the batch system (equilibrium, kinetics, thermodynamics). The process was aimed at obtaining a system with a developed surface and using less iron while maintaining the same catalysis active surface. In the next stages, the SiO2-Fe3+ systems were modified to obtain SiO2-Fe2O3 and SiO2-Fe2O3-Fe materials, which exhibited catalytic properties. To obtain catalytic systems, the processes of Fe3+ ions sorption, iron oxide precipitation - Fe2O3 and Fe reduction using a plant extract were used. Catalytic systems were applied in the N550 technical soot oxidation process to reduce the conversion temperature and increase its efficiency. The soot oxidation process was carried out in a muffle furnace using variable process parameters, i.e. temperature (450, 475, 500, 525 and 550oC), time (1, 2 and 3h), type of catalytic system (SiO2-Fe2O3, SiO2-Fe2O3-Fe) and its % content relative to the constant mass of soot (0, 10, 20 and 30%). The greatest increase in the conversion efficiency of soot particles was obtained using the SiO2-Fe2O3 system with a content of 20% at a temperature of 550oC and for 3 h.


Assuntos
Compostos Férricos , Oxirredução , Dióxido de Silício , Dióxido de Silício/química , Compostos Férricos/química , Catálise , Ferro/química , Cinética
10.
ACS Appl Mater Interfaces ; 16(31): 40313-40325, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052020

RESUMO

Laser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles. The composite electrode is fabricated by laser irradiation on a Kapton sheet to generate LIG material, followed by spray-coating with candle-soot nanoparticles and annealing. Materials characterization reveals that the annealing process enables a robust connection between the nanoparticles and the LIG materials and enhances nanoparticle graphitization. The prepared supercapacitor yields a maximum specific capacitance of 15.1 mF/cm2 at 0.1 mA/cm2, with a maximum energy density of 2.1 µWh/cm2 and a power density of 50 µW/cm2. Notably, the synergistic activity of candle soot and LIG surpasses the performances of previously reported LIG-based supercapacitors. Furthermore, the cyclic stability of the device demonstrates excellent capacitance retention of 80% and Coulombic efficiency of 100% over 10000 cycles.

11.
Chemosphere ; 362: 142734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950745

RESUMO

In this work, Co3O4 nanoparticles were successfully synthesized by precipitating a precursor salt solution in the form of microdroplets generated by a nebulizer, as an efficient, fast and low-cost approach. After drying and calcination, synthesized particles were deposited on stacked wire mesh monoliths by immersing the structures in a suspension containing synthesized Co3O4 particles and commercial ceria nanoparticles as a binder. These structured catalysts were evaluated for the combustion of diesel soot which constitutes a crucial step in the regeneration of catalytic particulate filters (CDPFs). Thermal and mechanical stability of Co,Ce washcoated monoliths were investigated. For this, successive catalytic evaluations of the structured system, with intermediate treatments at 900 °C (accelerated aging), were carried out indicating a very good activity and stability of the catalysts developed. Adherence tests showed good adhesion of the catalytic layer to the metallic substrate. Fresh and aged catalysts were fully characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Laser Raman Spectroscopy (LRS) and Temperature-Programmed Reduction (TPR). It was found that the catalytic coating resulted composed of nanometric CeO2 and Co3O4 along with chromium, iron and manganese oxides coming from the migration of the metallic substrate, in the catalytic cartridge calcined at 600 °C. Despite after calcination at 900 °C spinels of Co, Fe, Cr and Mn were observed, these oxides did not significantly affected the catalytic activity. Although this aging treatment at 900 °C was severe and is not expected under real conditions, it highlights the potential application of the catalytic metallic cartridges here developed.


Assuntos
Cobalto , Óxidos , Fuligem , Cobalto/química , Catálise , Óxidos/química , Fuligem/química , Nanopartículas Metálicas/química , Emissões de Veículos/análise , Difração de Raios X , Nanopartículas/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Cério
12.
Molecules ; 29(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999142

RESUMO

Ba1-xCexMnO3 (BM-Cex) and Ba1-xLaxMn0.7Cu0.3O3 (BMC-Lax) perovskite-type mixed oxides were synthesized using the sol-gel method adapted for aqueous media with different values of x (0, 0.1, 0.3, 0.6) to estimate the effect of the degree of the partial substitution of Ba by Ce or La on the structure and properties that are relevant for their use as catalysts for gasoline direct injection (GDI) soot oxidation. The samples were deeply characterized by ICP-OES, XRD, XPS, N2 adsorption, H2-TPR, and O2-TPD, and their potential as catalysts for soot oxidation has been analyzed in various scenarios that replicate the exhaust conditions of a GDI engine. By comparing the catalytic performance for soot oxidation of the two tested series (BM-Cex and BMC-Lax) and in the two conditions used (100% He and 1% O2 in He), it could be concluded that (i) in the absence of oxygen in the reaction atmosphere (100% He), BMC-La0.1 is the best catalyst, as copper is also able to catalyze the soot oxidation; and (ii) if oxygen is present in the reaction atmosphere (1% O2/He), BM-Ce0.1 is the most-active catalyst as it presents a higher proportion of Mn(IV) than BMC-La0.1. Thus, it seems that the addition of an amount of Ce or La higher than that corresponding to x = 0.1 in Ba1-xCexMnO3 and Ba1-xLaxCu0.3Mn0.7O3 does not allow us to improve the catalytic performance of BM-Ce0.1 and BMC-La0.1 for soot oxidation in the tested conditions.

13.
Small ; : e2403863, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073295

RESUMO

A bio-inspired approach to fabricate robust superhydrophobic (SHB) surfaces with anisotropic properties replicated from a leek leaf is presented. The polydimethylsiloxane (PDMS) replica surfaces exhibit anisotropic wetting, anti-icing, and light scattering properties due to microgrooves replicated from leek leaves. Superhydrophobicity is achieved by a novel modified candle soot (CS) coating that mimics leek's epicuticular wax. The resulting surfaces show a contact angle (CA) difference of ≈30° in the directions perpendicular and parallel to the grooves, which is similar to the anisotropic properties of the original leek leaf. The coated replica is durable, withstanding cyclic bending tests (up to 10 000 cycles) and mechanical sand abrasion (up to 60 g of sand). The coated replica shows low ice adhesion (10 kPa) after the first cycle; and then, increases to ≈70 kPa after ten icing-shearing cycles; while, anisotropy in ice adhesion becomes more evident with more cycles. In addition, the candle soot-coated positive replica (CS-coated PR) demonstrates a transmittance of ≈73% and a haze of ≈65% at the wavelength of 550 nm. The results show that the properties depend on the replicated surface features of the leek leaf, which means that the leek leaf appears to be a highly useful template for bioinspired surfaces.

14.
Environ Sci Pollut Res Int ; 31(32): 45105-45116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958858

RESUMO

Diesel soot is a significant contributor to air pollution. Soot particles present in diesel engine exhaust have a negative impact on the environment and human health. Diesel oxidation catalysts (DOCs) and diesel particulate filters (DPFs) currently use noble metal-based catalysts for soot oxidation. Due to the use of noble metals in the catalyst, the cost of diesel after-treatment systems is steadily rising. As a result, diesel vehicles have become commercially less viable than gasoline vehicles and electronic vehicles. The study focuses on an alternative diesel oxidation catalyst with efficiency similar to that of a noble metal catalyst but with a much lower cost. CeO2-Al2O3 catalysts are known for their oxygen storage capacity and high redox activity, making them suitable for soot oxidation. Adding Zr to these catalysts has been shown to influence their structural and chemical properties, significantly affecting their catalytic behavior. Therefore, the current study is focused on using Zr/CeO2-Al2O3 as a substitute for noble metal-based catalysts to enhance its performance for diesel soot oxidation in automotive exhaust. Evaporation-induced self-assembly (EISA) was used to prepare 1, 3, and 5 weight (wt) % Zr supported mesoporous CeO2-Al2O3 catalysts. Morphological, structural, and physicochemical properties of the synthesized catalysts were examined using Brunauer-Emmett-Teller (BET) absolute isotherm, Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Temperature programmed reduction (TPR), and Temperature-programmed desorption of ammonia (NH3-TPD). XRD, BET, and SEM data confirmed that the catalysts were mesoporous and low-crystalline with a high surface area. The soot oxidation activity of the catalysts was evaluated using a thermogravimetric analysis (TGA) technique. The loose contacts soot oxidation activity test suggested that 50% oxidation of soot occurred at 390 °C in the absence of a catalyst. T50 of CeO2-Al2O3 catalyzed soot oxidation was 296 °C. Adding Zr to the catalyst significantly improved catalytic activity for diesel soot oxidation. We observed a further drastic change in T50 of soot over 1, 3, and 5% Zr/CeO2-Al2O3, which were 220 °C, 210 °C, and 193 °C, respectively. According to these results, incorporating Zr into the CeO2-Al2O3 catalyst significantly improved the oxidation process of soot.


Assuntos
Óxido de Alumínio , Oxirredução , Fuligem , Emissões de Veículos , Zircônio , Catálise , Zircônio/química , Óxido de Alumínio/química , Fuligem/química , Cério/química , Gasolina
15.
Mar Pollut Bull ; 205: 116626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959570

RESUMO

This study aims to investigate the interactions between marine oil snow (MOS) formation and soot particles derived from two distinct oils: condensate and heavy oil. Experimental findings demonstrate that the properties of oil droplets and soot particles play a key role in MOS formation. Peak MOS formation is observed within the initial days for condensate, while for heavy oil, peak formation occurs at a later stage. Furthermore, the addition of oils and soot particles influences the final concentrations of polycyclic aromatic hydrocarbons (PAHs) in MOS. Remarkably, the ranking order of PAHs with different rings in various MOS samples remains consistent: 4- > 3- > 5- > 2- > 6-ring. Specific diagnostic ratios such as Phe/Ant, Ant/(Ant + Phe), BaA/(Chr + BaA), and LMW/HMW effectively differentiate petrogenic and pyrogenic sources of PAHs in MOS. And stable ratios like Flu/(Pyr + Flu), InP/(InP + BghiP), and BaF/BkF are identified for source analysis of soot MOS.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Fuligem , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Petróleo , Poluição por Petróleo/análise , Neve/química
16.
Environ Sci Pollut Res Int ; 31(33): 45718-45733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976192

RESUMO

In this work, we aim to investigate and compare the combustion reactivities of real biofuel soot and fossil-fuel soot in the active and passive regeneration conditions of DPF and GPF through temperature-programmed oxidation (TPO). Higher reactivity of biofuel soot is achieved even under GPF conditions with extremely low oxygen concentration (~ 1%), which provides a great potential for low-temperature regeneration of GPF. Such a result is mainly attributed to the low graphitization and less surface C = C groups of biofuel soot. Unfortunately, the presence of high-content ashes (~ 47%) and P impurity in real biofuel soot hinder its combustion reactivity. TPO evidences that the O2/NOX-lacking conditions in GPF are key factors to impact the combustion of soot, especially fossil-fuel soot. This work provides some useful information for understanding real biofuel and fossil-fuel soot combustion in GPF and DPF regeneration and further improvement in filter regeneration process.


Assuntos
Biocombustíveis , Combustíveis Fósseis , Gasolina , Fuligem , Oxigênio , Filtração
17.
J Hazard Mater ; 476: 135010, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38917632

RESUMO

The content of active lattice oxygen and oxygen vacancies is crucial for the catalytic oxidation of soot. Herein, we adjust the Pr-O bond strength in Pr6O11 by doping several common transition metals (Mn, Fe, Co, Ni) to promote the formation of oxygen vacancies and the activation of lattice oxygen. This strategy does not compromise its crystal structure, allowing for improved catalytic performance while maintaining stability. The Mn-doped Pr6O11 catalyst shows the best soot catalytic oxidation performance. Its T50 (the temperature of soot conversion reaching 50 %) value is 396 °C under loose contact. Further characterizations and density functional theory (DFT) calculations demonstrate that PMO possesses a large specific surface area. Additionally, the weakening the strength of the Pr-O bond leaded to an increase in oxygen vacancies, which in turn enhanced the redox ability of catalyst. This work will provide a reference for the development of Pr-based catalysts for soot combustion.

18.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893734

RESUMO

Triboelectric nanogenerators (TENGs) have emerged as viable micro power sources for an array of applications. Since their inception in 2012, TENGs have been the subject of significant advancements in terms of structural design and the development of friction materials. Despite these advancements, the complexity of their structural designs and the use of costly friction materials hinder their practical application. This study introduces a simplified TENG model utilizing an economical composite film of fullerene carbon soot (FS)-doped polydimethylsiloxane (PDMS) (FS-TENG). It confirms the FS-TENG's ability to convert mechanical energy into electrical energy, as demonstrated through experimental validation. The generated electricity by the FS-TENG can power devices such as light-emitting diodes (LEDs), digital watches, kitchen timers, and sports stopwatches, highlighting its efficiency. This research enhances the development of TENGs featuring low-cost, streamlined structures for sustainable and autonomous energy sensing applications.

19.
Environ Sci Technol ; 58(24): 10558-10566, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833713

RESUMO

Soot particles emitted from aircraft engines constitute a major anthropogenic source of pollution in the vicinity of airports and at cruising altitudes. This emission poses a significant threat to human health and may alter the global climate. Understanding the characteristics of soot particles, particularly those generated from Twin Annular Premixing Swirler (TAPS) combustors, a mainstream combustor in civil aviation engines, is crucial for aviation environmental protection. In this study, a comprehensive characterization of soot particles emitted from TAPS combustors was conducted using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The morphology and nanostructure of soot particles were examined across three distinct fuel stage ratios (FSR), at 10%, 15%, and 20%. The SEM analysis of soot particle morphology revealed that coated particles constitute over 90% of the total particle sample, with coating content increasing proportionally to the fuel stage ratio. The results obtained from HRTEM indicated that average primary particle sizes increase with the fuel stage ratio. The results of HRTEM and Raman spectroscopy suggest that the nanostructure of soot particles becomes more ordered and graphitized with an increasing fuel stage ratio, resulting in lower oxidation activity. Specifically, soot fringe length increased with the fuel stage ratio, while soot fringe tortuosity and separation distance decreased. In addition, there is a prevalent occurrence of defects in the graphitic lattice structure of soot particles, suggesting a high degree of elemental carbon disorder.


Assuntos
Aeronaves , Fuligem , Nanoestruturas/química , Tamanho da Partícula , Emissões de Veículos , Análise Espectral Raman , Poluentes Atmosféricos
20.
Environ Sci Technol ; 58(26): 11578-11586, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899536

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are the primary organic carbons in soot. In addition to PAHs with even carbon numbers (PAHeven), substantial odd-carbon PAHs (PAHodd) have been widely observed in soot and ambient particles. Analyzing and understanding the photoaging of these compounds are essential for assessing their environmental effects. Here, using laser desorption ionization mass spectrometry (LDI-MS), we reveal the substantially different photoreactivity of PAHodd from PAHeven in the aging process and their MS detection through their distinct behaviors in the presence and absence of elemental carbon (EC) in soot. During direct photooxidation of organic carbon (OC) alone, the PAHeven are oxidized more rapidly than the PAHodd. However, the degradation of PAHodd becomes preponderant over PAHeven in the presence of EC during photoaging of the whole soot. All of these observations are proposed to originate from the more rapid hydrogen abstraction reaction from PAHodd in the EC-photosensitized reaction, owing to its unique structure of a single sp3-hybridized carbon site. Our findings reveal the photoreactivity and reaction mechanism of PAHodd for the first time, providing a comprehensive understanding of the oxidation of PAHs at a molecular level during soot aging and highlight the enhanced effect of EC on PAHodd ionization in LDI-MS analysis.


Assuntos
Carbono , Hidrocarbonetos Policíclicos Aromáticos , Fuligem , Hidrocarbonetos Policíclicos Aromáticos/química , Carbono/química , Fuligem/química , Processos Fotoquímicos , Oxirredução , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA