RESUMO
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Assuntos
Mapeamento Encefálico , Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Oxigênio/sangue , Análise por Conglomerados , AdultoRESUMO
BACKGROUND: Accurate predictions of animal occurrence in time and space are crucial for informing and implementing science-based management strategies for threatened species. METHODS: We compiled known, available satellite tracking data for pygmy blue whales in the Eastern Indian Ocean (n = 38), applied movement models to define low (foraging and reproduction) and high (migratory) move persistence underlying location estimates and matched these with environmental data. We then used machine learning models to identify the relationship between whale occurrence and environment, and predict foraging and migration habitat suitability in Australia and Southeast Asia. RESULTS: Our model predictions were validated by producing spatially varying accuracy metrics. We identified the shelf off the Bonney Coast, Great Australian Bight, and southern Western Australia as well as the slope off the Western Australian coast as suitable habitat for migration, with predicted foraging/reproduction suitable habitat in Southeast Asia region occurring on slope and in deep ocean waters. Suitable foraging habitat occurred primarily on slope and shelf break throughout most of Australia, with use of the continental shelf also occurring, predominanly in South West and Southern Australia. Depth of the water column (bathymetry) was consistently a top predictor of suitable habitat for most regions, however, dynamic environmental variables (sea surface temperature, surface height anomaly) influenced the probability of whale occurrence. CONCLUSIONS: Our results indicate suitable habitat is related to dynamic, localised oceanic processes that may occur at fine temporal scales or seasonally. An increase in the sample size of tagged whales is required to move towards developing more dynamic distribution models at seasonal and monthly temporal scales. Our validation metrics also indicated areas where further data collection is needed to improve model accuracy. This is of particular importance for pygmy blue whale management, since threats (e.g., shipping, underwater noise and artificial structures) from the offshore energy and shipping industries will persist or may increase with the onset of an offshore renewable energy sector in Australia.
RESUMO
Significance: Accurate spatial registration of probes (e.g., optodes and electrodes) for measurement of brain activity is a crucial aspect in many neuroimaging modalities. It may increase measurement precision and enable the transition from channel-based calculations to volumetric representations. Aim: This technical note evaluates the efficacy of a commercially available infrared three-dimensional (3D) scanner under actual experimental (or clinical) conditions and provides guidelines for its use. Method: We registered probe positions using an infrared 3D scanner and validated them against magnetic resonance imaging (MRI) scans on five volunteer participants. Results: Our analysis showed that with standard cap fixation, the average Euclidean distance of probe position among subjects could reach up to 43 mm, with an average distance of 15.25 mm [standard deviation (SD) = 8.0]. By contrast, the average distance between the infrared 3D scanner and the MRI-acquired positions was 5.69 mm (SD = 1.73), while the average difference between consecutive infrared 3D scans was 3.43 mm (SD = 1.62). The inter-optode distance, which was fixed at 30 mm, was measured as 29.28 mm (SD = 1.12) on the MRI and 29.43 mm (SD = 1.96) on infrared 3D scans. Our results demonstrate the high accuracy and reproducibility of the proposed spatial registration method, making it suitable for both functional near-infrared spectroscopy and electroencephalogram studies. Conclusions: The 3D infrared scanning technique for spatial registration of probes provides economic efficiency, simplicity, practicality, repeatability, and high accuracy, with potential benefits for a range of neuroimaging applications. We provide practical guidance on anonymization, labeling, and post-processing of acquired scans.
RESUMO
INTRODUCTION: The relationship between brain lesions and stroke outcomes is crucial for advancing patient prognosis and developing effective therapies. Stroke is a leading cause of disability worldwide, and it is important to understand the neurological basis of its varied symptomatology. Lesion-symptom mapping (LSM) methods provide a means to identify brain areas that are strongly associated with specific symptoms. However, inner variations in LSM methods can yield different results. To address this, our study aimed to characterize the lesion-symptom mapping variability using three different LSM methods. Specifically, we sought to determine a lesion symptom core across LSM approaches enhancing the robustness of the analysis and removing potential spatial bias. MATERIAL & METHODS: A cohort consisting of 35 patients with either right- or left-sided middle cerebral artery strokes were enrolled and evaluated using the NIHSS at 24 h post-stroke. Anatomical T1w MRI scans were also obtained 24 h post-stroke. Lesion masks were segmented manually and three distinctive LSM methods were implemented: ROI correlation-based, univariate, and multivariate approaches. RESULTS: The results of the LSM analyses showed substantial spatial differences in the extension of each of the three lesion maps. However, upon overlaying all three lesion-symptom maps, a consistent lesion core emerged, corresponding to the territory associated with elevated NIHSS scores. This finding not only enhances the spatial accuracy of the lesion map but also underscores its clinical relevance. CONCLUSION: This study underscores the significance of exploring complementary LSM approaches to investigate the association between brain lesions and stroke outcomes. By utilizing multiple methods, we can increase the robustness of our results, effectively addressing and neutralizing potential spatial bias introduced by each individual method. Such an approach holds promise for enhancing our understanding of stroke pathophysiology and optimizing patient care strategies.
Assuntos
Mapeamento Encefálico , Acidente Vascular Cerebral , Humanos , Mapeamento Encefálico/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Infarto da Artéria Cerebral MédiaRESUMO
Stereotactic body radiotherapy (SBRT) treatment of oligometastatic lesions via single-isocenter/multi-target (SIMT) plan is more efficient than using multi-isocenter/multitarget SBRT. This study quantifies the spatial positioning accuracy of 2 commercially available LINAC systems for SIMT treatment pertaining to the potential amplification of error as a function of the target's distance-to-isocenter. We compare the Ring-Gantry Halcyon LINAC equipped with the fast iterative conebeam-CT (iCBCT) for image-guided SIMT treatment, and the SBRT-dedicated C-Arm TrueBeam with standard pretreatment CBCT imaging. For both systems, Sun Nuclear's MultiMet Winston-Lutz Cube phantom with 6 metallic BBs distributed at different planes up to 7 cm away from the isocenter was used. The phantom was aligned and imaged via CBCT, and then couch corrections were applied. To treat all 6 BBs, an Eclipse 10-field 3D-conformal Field-in-Field (2×2 cm2 MLC field to each BB) plan for varying gantry, collimator, and couch (TrueBeam only) positions was developed for both machines with 6MV-FFF beam. The plan was delivered through ARIA once a week. The EPID images were analyzed via Sun Nuclear's software for spatial positioning accuracy. On TrueBeam, the treatment plan was delivered twice: once with 3DoF translational corrections and once with PerfectPitch 6DoF couch corrections. The average 3D spatial positioning accuracy was 0.55 ± 0.30 mm, 0.54 ± 0.24 mm, and 0.56 ± 0.28 mm at isocenter, and 0.59 ± 0.30 mm, 0.69 ± 0.30 mm, and 0.70 ± 0.35 mm at 7 cm distance-to-isocenter for Halcyon, TrueBeam 3DoF, and TrueBeam 6DoF, respectively. This suggests there are no clinically significant deviations of spatial uncertainty between the platforms with the distance-to-isocenter. On both platforms, our weekly independent measurements demonstrated the reproducibility for less than 1.0 mm positional accuracy of off-axis targets up to 7 cm from the isocenter. Due to this, no additional PTV-margin is suggested for lesions within 7 cm of isocenter. This study confirms that Halcyon can deliver similar positional accuracy to SBRT-dedicated TrueBeam to off-axis targets up to 7 cm from isocenter. These results further benchmark the spatial uncertainty of our extensively used SBRT-dedicated TrueBeam LINAC for SIMT SBRT treatments.
RESUMO
OBJECTIVE: Using objective oculomotor measures, we aimed to: (1) compare oculomotor performance in patients with drug-resistant focal epilepsy to healthy controls, and (2) investigate the differential impact of epileptogenic focus laterality and location on oculomotor performance. METHODS: We recruited 51 adults with drug-resistant focal epilepsy from the Comprehensive Epilepsy Programs of two tertiary hospitals and 31 healthy controls to perform prosaccade and antisaccade tasks. Oculomotor variables of interest were latency, visuospatial accuracy, and antisaccade error rate. Linear mixed models were performed to compare interactions between groups (epilepsy, control) and oculomotor tasks, and between epilepsy subgroups and oculomotor tasks for each oculomotor variable. RESULTS: Compared to healthy controls, patients with drug-resistant focal epilepsy exhibited longer antisaccade latencies (mean difference = 42.8 ms, P = 0.001), poorer spatial accuracy for both prosaccade (mean difference = 0.4°, P = 0.002), and antisaccade tasks (mean difference = 2.1°, P < 0.001), and more antisaccade errors (mean difference = 12.6%, P < 0.001). In the epilepsy subgroup analysis, left-hemispheric epilepsy patients exhibited longer antisaccade latencies compared to controls (mean difference = 52.2 ms, P = 0.003), while right-hemispheric epilepsy was the most spatially inaccurate compared to controls (mean difference = 2.5°, P = 0.003). The temporal lobe epilepsy subgroup displayed longer antisaccade latencies compared to controls (mean difference = 47.6 ms, P = 0.005). SIGNIFICANCE: Patients with drug-resistant focal epilepsy exhibit poor inhibitory control as evidenced by a high percentage of antisaccade errors, slower cognitive processing speed, and impaired visuospatial accuracy on oculomotor tasks. Patients with left-hemispheric epilepsy and temporal lobe epilepsy have markedly impaired processing speed. Overall, oculomotor tasks can be a useful tool to objectively quantify cerebral dysfunction in drug-resistant focal epilepsy.
Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Adulto , Movimentos Sacádicos , Movimentos Oculares , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsias Parciais/complicações , Epilepsias Parciais/diagnóstico , Tempo de ReaçãoRESUMO
Ecological environment assessment, which forms the basis for the survival and development of human society, is a crucial measure for the sustainable development of society and economy. However, current quantitative assessment models such as EI, EQI, RSEI et al. are insufficient to meet the requirements of dynamic research in large areas, long time series and dense time intervals. Therefore, in this paper, we constructed the comprehensive ecological environment quality index model SCEQI that can meet these needs by applying the remote sensing big data as the data source. The SCEQI aggregated the ecological indices NDVI, NDBSI, Lst and Wet by full-sequence dynamic dimensionless, automated principal component analysis and multi-temporal average method. In order to verify the spatial and temporal accuracy of the model, we took Henan Province as an example to compare the result of SCEQI with that of EI, EQI, RSEI and proved that SCEQI performed better in both time and space. Also, we verified the superiority of time, space, and precision of SCEQI with profiles, samples, and cluster analysis.
Assuntos
Ecossistema , Monitoramento Ambiental , Humanos , Tecnologia de Sensoriamento Remoto , Meio Ambiente , Modelos Teóricos , ChinaRESUMO
PURPOSE: To study the impact of systematic MLC leaf positional uncertainties (stemming from mechanical inaccuracies or sub-optimal MLC modeling) on the quality of intracranial single-isocenter multi-target VMAT-SRS treatment plans. An estimation of appropriate tolerance levels is attempted. METHODS: Five patients, with three to four metastases and at least one target lying in close proximity to organs-at-risk (OARs) were included in this study. A single-isocenter multi-arc VMAT plan per patient was prepared, which served as the reference for dosimetric impact evaluation. A range of leaf offsets was introduced (±0.03 mm up to ±0.30 mm defined at the MLC plane) to both leaf banks, by varying the leaf offset MLC modeling parameter in Monaco for all the prepared plans, in order to simulate projected leaf offsets of ±0.09 mm up to ±0.94 mm at the isocenter plane, respectively. For all offsets simulated and cases studied, dose distributions were re-calculated and compared with the corresponding reference ones. An experimental dosimetric procedure using the SRS mapCHECK diode array was also performed to support the simulation study results and investigate its suitability to detect small systematic leaf positional errors. RESULTS: Projected leaf offsets of ±0.09 mm were well-tolerated with respect to both target dosimetry and OAR-sparing. A linear relationship was found between D95% percentage change and projected leaf offset (slope: 12%/mm). Impact of projected offset on target dosimetry was strongly associated with target volume. In two cases, plans that could be considered potentially clinically unacceptable (i.e., clinical dose constraint violation) were obtained even for projected offsets as small as 0.19 mm. The performed experimental dosimetry check can detect potential small systematic leaf errors. CONCLUSIONS: Plan quality indices and dose-volume metrics are very sensitive to systematic sub-millimeter leaf positional inaccuracies, projected at the isocenter plane. Acceptable and tolerance levels in systematic MLC uncertainties need to be tailored to VMAT-SRS spatial and dosimetric accuracy requirements.
Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodosRESUMO
PURPOSE: In frame-based Gamma Knife (GK) stereotactic radiosurgery two treatment planning workflows are commonly employed; one based solely on magnetic resonance (MR) images and the other based on magnetic resonance/computed tomography (MR/CT) co-registered images. In both workflows, target localization accuracy (TLA) can be deteriorated due to MR-related geometric distortions and/or MR/CT co-registration uncertainties. In this study, the overall TLA following both clinical workflows is evaluated for cases of multiple brain metastases. METHODS: A polymer gel-filled head phantom, having the Leksell stereotactic headframe attached, was CT-imaged and irradiated by a GK Perfexion unit. A total of 26 4-mm shots were delivered at 26 locations directly defined in the Leksell stereotactic space (LSS), inducing adequate contrast in corresponding T2-weighted (T2w) MR images. Prescribed shot coordinates served as reference locations. An additional MR scan was acquired to implement the "mean image" distortion correction technique. The TLA for each workflow was assessed by comparing the radiation-induced target locations, identified in MR images, with corresponding reference locations. Using T1w MR and CT images of 15 patients (totaling 81 lesions), TLA in clinical cases was similarly assessed, considering MR-corrected data as reference. For the MR/CT workflow, both global and region of interest (ROI)-based MR/CT registration approaches were studied. RESULTS: In phantom measurements, the MR-corrected workflow demonstrated unsurpassed TLA (median offset of 0.2 mm) which deteriorated for MR-only and MR/CT workflows (median offsets of 0.8 and 0.6 mm, respectively). In real-patient cases, the MR-only workflow resulted in offsets that exhibit a significant positive correlation with the distance from the MR isocenter, reaching 1.1 mm (median 0.6 mm). Comparable results were obtained for the MR/CT-global workflow, although a maximum offset of 1.4 mm was detected. TLA was improved with the MR/CT-ROI workflow resulting in median/maximum offsets of 0.4 mm/1.1 mm. CONCLUSIONS: Subpixel TLA is achievable in all workflows. For the MR/CT workflow, a ROI-based MR/CT co-registration approach could considerably increase TLA and should be preferred instead of a global registration.
Assuntos
Radiocirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Radiocirurgia/métodos , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Febrile seizures are the most common type of seizures in children. While in most children the outcome is favorable, children with febrile status epilepticus may exhibit modest cognitive impairment. Whether children with other forms of complex febrile seizure, such as repetitive febrile seizures within the same illness are at risk of cognitive deficits is not known. In this study, we used a well-established model of experimental febrile seizures in rat pups to compare the effects of febrile status epilepticus and recurrent febrile seizures on subsequent spatial cognition and anxiety. METHODS: Male and female rat pups were subjected to hyperthermic seizures at postnatal day 10 and were divided into groups of rats with continuous seizures for ≥40â¯min or recurrent febrile seizures. They were then tested as adults in the active avoidance and spatial accuracy tests to assess spatial learning and memory and the elevated plus maze to measure anxiety. RESULTS: Febrile status epilepticus rats demonstrated impaired spatial cognition in active avoidance and spatial accuracy and exhibited reduced anxiety-like behavior in the elevated plus maze. Rats with recurrent febrile seizures did not differ significantly from the controls on any measures. There were also significant sex-related differences with females with FSE performing far better than males with FSE in active avoidance but demonstrating a navigational learning impairment relative to CTL females in spatial accuracy. However, once learned, females with FSE performed the spatial accuracy task as well as CTL females. CONCLUSION: There is a duration-dependent effect of febrile seizures on subsequent cognitive and behavioral outcomes. Febrile status epilepticus resulted in spatial cognitive deficits and reduced anxiety-related behaviors whereas rats with recurrent febrile seizures did not differ from controls. Sex had a remarkable effect on spatial cognitive outcome where males with FSE fared worse than females with FSE. The results demonstrate that sex should be considered as a biological variable in studies evaluating the effects of seizures on the developing brain.
Assuntos
Disfunção Cognitiva , Convulsões Febris , Estado Epiléptico , Animais , Cognição , Disfunção Cognitiva/etiologia , Feminino , Hipocampo , Humanos , Masculino , Aprendizagem em Labirinto , Ratos , Convulsões/complicações , Convulsões Febris/complicações , Estado Epiléptico/complicaçõesRESUMO
Dopaminergic mechanisms regulating cognitive and motor control were evaluated comparing visuoperceptual and perceptuomotor functions in Parkinson's disease (PD). The performance of PD patients (n = 40) was contrasted with healthy controls (n = 42) across two separate visits (on and off dopaminergic medications) on computerized tasks of perception and aiming to a target at variable stimulus lengths (4, 8, 12 cm). Novel visuoperceptual tasks of length equivalence and width interval estimations without motor demands were compared with tasks estimating spatial deviation in movement termination. The findings support the presence of spatial deficits in early PD, more pronounced with increased discrimination difficulty, and with shorter stimulus lengths of 4 cm for both visuoperceptual and perceptumotor functions. Dopaminergic medication had an adverse impact on visuoperceptual accuracy in particular for length equivalence estimations, in contrast with dopaminergic modulation of perceptuomotor functions that reduced angular displacements toward the target. The differential outcomes for spatial accuracy in perception versus movement termination in PD are consistent with involvement of the direct pathway and models of progressive loss of dopamine through corticostriatal loops. Future research should develop validated and sensitive standardized tests of perception and explore dopaminergic selective deficits in PD to optimize medication titration for motor and cognitive symptoms of the disease.
RESUMO
BACKGROUND: The study aimed to evaluate the validity and spatial accuracy of the Food Standards Agency Food Hygiene Rating online data through a field audit. METHODS: A field audit was conducted in five Lower Layer Super Output Areas (LSOAs) in the North East of England. LSOAs were purposively selected from the top and bottom quintiles of the Index of Multiple Deprivation and from urban and rural areas. The FHRS data validity against the field data was measured as Positive Predictive Values (PPV) and sensitivity. Spatial accuracy was evaluated via mean difference in straight line distances between the FHRS coordinates and the field coordinates. RESULTS: In all, 182 premises were present in the field, of which 162 were in the FHRS data giving a sensitivity of 89%. Eight outlets recorded in the FHRS data were absent in the field, giving a PPV of 95%.The mean difference in the geographical coordinates of the field audit compared to the FHRS was 110 m, and <100 m for 77% of outlets. CONCLUSIONS: After an evaluation of the validity and spatial accuracy of the FHRS data, the results suggest that it is a useful dataset for surveillance of the food environment and for intervention evaluation.
Assuntos
Abastecimento de Alimentos , Alimentos , Coleta de Dados , Inglaterra , Humanos , Higiene , Características de ResidênciaRESUMO
Electroencephalography (EEG) and source estimation can be used to identify brain areas activated during a task, which could offer greater insight on cortical dynamics. Source estimation requires knowledge of the locations of the EEG electrodes. This could be provided with a template or obtained by digitizing the EEG electrode locations. Operator skill and inherent uncertainties of a digitizing system likely produce a range of digitization reliabilities, which could affect source estimation and the interpretation of the estimated source locations. Here, we compared the reliabilities of five digitizing methods (ultrasound, structured-light 3D scan, infrared 3D scan, motion capture probe, and motion capture) and determined the relationship between digitization reliability and source estimation uncertainty, assuming other contributors to source estimation uncertainty were constant. We digitized a mannequin head using each method five times and quantified the reliability and validity of each method. We created five hundred sets of electrode locations based on our reliability results and applied a dipole fitting algorithm (DIPFIT) to perform source estimation. The motion capture method, which recorded the locations of markers placed directly on the electrodes had the best reliability with an average electrode variability of 0.001 cm. Then, in order of decreasing reliability were the method using a digitizing probe in the motion capture system, an infrared 3D scanner, a structured-light 3D scanner, and an ultrasound digitization system. Unsurprisingly, uncertainty of the estimated source locations increased with greater variability of EEG electrode locations and less reliable digitizing systems. If EEG electrode location variability was â½1 cm, a single source could shift by as much as 2 cm. To help translate these distances into practical terms, we quantified Brodmann area accuracy for each digitizing method and found that the average Brodmann area accuracy for all digitizing methods was >80%. Using a template of electrode locations reduced the Brodmann area accuracy to â½50%. Overall, more reliable digitizing methods can reduce source estimation uncertainty, but the significance of the source estimation uncertainty depends on the desired spatial resolution. For accurate Brodmann area identification, any of the digitizing methods tested can be used confidently.
RESUMO
We define a measure for the accuracy of tomographic reconstruction in atom probe tomography, named here the spatial error index. We demonstrate that this index can be used to compare rigorously the spatial accuracy of various different approaches to the calculation of tomographic reconstruction. This is useful, for example, to evaluate the performance of alternate tomographic reconstruction approaches, and ensures that the comparisons are independent of individual data quality or other instrumental parameters. We then introduce a new "adaptive reconstruction" formalism that uses a progression of reconstruction parameters based on a per-atom correction from the cube root of the inverse of the voltage, along with linear correction factors linked to the evaporation sequence. We apply the measure for spatial accuracy to this new reconstruction protocol.
RESUMO
Current approaches to reconstruction in atom probe tomography produce results that exhibit substantial distortions throughout the analysis depth. This is largely because of the need to apply a multitude of assumptions when estimating the evolution of the tip shape, and other pseudo-empirical reconstruction factors, which vary both across the face of the tip and throughout the analysis depth. We introduce a new crystallography-mediated reconstruction to improve the spatial accuracy and dramatically reduce these in-depth variations. To achieve this, we developed a barycentric transform to directly relate atomic positions in detector space to real space. This is mediated by novel crystallographic analysis techniques, including: (1) calculating the orientation of a crystal directly from the field evaporation map, (2) tracking pole locations throughout the evaporation sequence, and (3) accounting for the evolving tip radius in a manner that removes the dependence on the geometric field factor. By improving the in-depth spatial accuracy of the atom probe reconstruction, a greater accuracy of the atomic neighborhood relationships is available. This is critical in modern materials science and engineering, where an understanding of the solid solution architecture, precipitate dispersions, and descriptions of the interfaces between phases or grains are key inputs to microstructure-property relationships.
RESUMO
PURPOSE: MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. METHOD AND MATERIALS: To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. RESULTS: All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength â¼1000 psi, density ~20 lb/ft3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. CONCLUSION: The design and implementation of a modular, extendable distortion phantom was optimized for several bore configurations. The phantom and analysis software will be available for multi-institutional collaborations and cross-validation trials to support MR-only planning.
Assuntos
Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Software , Desenho de Equipamento , Imageamento por Ressonância Magnética/normas , Tomografia Computadorizada por Raios XRESUMO
In view of their superior soft tissue contrast compared to computed tomography, magnetic resonance images are commonly involved in stereotactic radiosurgery/radiotherapy applications for target delineation purposes. It is known, however, that magnetic resonance images are geometrically distorted, thus deteriorating dose delivery accuracy. The present work focuses on the assessment of geometric distortion inherent in magnetic resonance images used in stereotactic radiosurgery/radiotherapy treatment planning and attempts to quantitively evaluate the consequent impact on dose delivery. The geometric distortions for 3 clinical magnetic resonance protocols (at both 1.5 and 3.0 T) used for stereotactic radiosurgery/radiotherapy treatment planning were evaluated using a recently proposed phantom and methodology. Areas of increased distortion were identified at the edges of the imaged volume which was comparable to a brain scan. Although mean absolute distortion did not exceed 0.5 mm on any spatial axis, maximum detected control point disposition reached 2 mm. In an effort to establish what could be considered as acceptable geometric uncertainty, highly conformal plans were utilized to irradiate targets of different diameters (5-50 mm). The targets were mispositioned by 0.5 up to 3 mm, and dose-volume histograms and plan quality indices clinically used for plan evaluation and acceptance were derived and used to investigate the effect of geometrical uncertainty (distortion) on dose delivery accuracy and plan quality. The latter was found to be strongly dependent on target size. For targets less than 20 mm in diameter, a spatial disposition of the order of 1 mm could significantly affect (>5%) plan acceptance/quality indices. For targets with diameter greater than 2 cm, the corresponding disposition was found greater than 1.5 mm. Overall results of this work suggest that efficacy of stereotactic radiosurgery/radiotherapy applications could be compromised in case of very small targets lying distant from the scanner's isocenter (eg, the periphery of the brain).
Assuntos
Encéfalo/efeitos da radiação , Imageamento por Ressonância Magnética , Neoplasias/radioterapia , Radiocirurgia/efeitos adversos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagens de Fantasmas , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios XRESUMO
A classic problem in psychology is understanding how the brain creates a stable and accurate representation of space for perception and action despite a constantly moving eye. Two mechanisms have been proposed to solve this problem: Herman von Helmholtz's idea that the brain uses a corollary discharge of the motor command that moves the eye to adjust the visual representation, and Sir Charles Sherrington's idea that the brain measures eye position to calculate a spatial representation. Here, we discuss the cognitive, neuropsychological, and physiological mechanisms that support each of these ideas. We propose that both are correct: A rapid corollary discharge signal remaps the visual representation before an impending saccade, computing accurate movement vectors; and an oculomotor proprioceptive signal enables the brain to construct a more accurate craniotopic representation of space that develops slowly after the saccade.
Assuntos
Movimentos Oculares/fisiologia , Propriocepção/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção Visual/fisiologia , Cognição/fisiologia , Humanos , Músculos Oculomotores/fisiologia , Psicofísica , Movimentos Sacádicos/fisiologia , Vias Visuais/fisiologiaRESUMO
Although locating wildlife roadkill hotspots is essential to mitigate road impacts, the influence of study design on hotspot identification remains uncertain. We evaluated how sampling frequency affects the accuracy of hotspot identification, using a dataset of vertebrate roadkills (n = 4427) recorded over a year of daily surveys along 37 km of roads. "True" hotspots were identified using this baseline dataset, as the 500-m segments where the number of road-killed vertebrates exceeded the upper 95% confidence limit of the mean, assuming a Poisson distribution of road-kills per segment. "Estimated" hotspots were identified likewise, using datasets representing progressively lower sampling frequencies, which were produced by extracting data from the baseline dataset at appropriate time intervals (1-30 days). Overall, 24.3% of segments were "true" hotspots, concentrating 40.4% of roadkills. For different groups, "true" hotspots accounted from 6.8% (bats) to 29.7% (small birds) of road segments, concentrating from <40% (frogs and toads, snakes) to >60% (lizards, lagomorphs, carnivores) of roadkills. Spatial congruence between "true" and "estimated" hotspots declined rapidly with increasing time interval between surveys, due primarily to increasing false negatives (i.e., missing "true" hotspots). There were also false positives (i.e., wrong "estimated" hotspots), particularly at low sampling frequencies. Spatial accuracy decay with increasing time interval between surveys was higher for smaller-bodied (amphibians, reptiles, small birds, small mammals) than for larger-bodied species (birds of prey, hedgehogs, lagomorphs, carnivores). Results suggest that widely used surveys at weekly or longer intervals may produce poor estimates of roadkill hotspots, particularly for small-bodied species. Surveying daily or at two-day intervals may be required to achieve high accuracy in hotspot identification for multiple species.
Assuntos
Monitoramento Ambiental/métodos , Inquéritos e Questionários , Anfíbios , Animais , Animais Selvagens , Aves , Mamíferos , Veículos Automotores , Portugal , RépteisRESUMO
Most models of motor programing contend that one can perform learned actions with different muscle groups or limbs demonstrating the concept of motor equivalence. The goal of this review is to determine the generality of this concept within the context of aiming movements performed by both preferred and non-preferred limbs. Theoretical approaches to motor programing are described, followed by a comparison of a variety of kinematic measures taken from preferred and non-preferred limbs from simple and more complex aiming tasks. In general, the support for motor equivalency is strong for one- and two-dimensional aiming tasks and for simultaneous bimanual movements, but mixed for unconstrained throwing tasks and tasks that require feedback-based corrections.