Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.693
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124997, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173322

RESUMO

Polylactic acid (PLA) straws hold eco-friendly potential; however, residual diisocyanates used to enhance the mechanical strength can generate carcinogenic primary aromatic amines (PAAs), posing health risks. Herein, we present a rapid, comprehensive strategy to detecting PAAs in 18 brands of food-grade PLA straws and assessing their migration into diverse food simulants. Surface-enhanced Raman spectroscopy was conducted to rapidly screen straws for PAAs. Subsequently, qualitative determination of migrating PAAs into various food simulants (4 % acetic acid, 10 % ethanol, 50 % ethanol) occurred at 70 °C for 2 h using liquid chromatography-mass spectrometry. Three PAAs including 4,4'-methylenedianiline, 2,4'-methylenedianiline, and 2,4-diaminotoluene were detected in all straws. Specifically, 2,4-diaminotoluene in 50 % ethanol exceeded specific migration limit of 2 µg/kg, raising safety concerns. Notably, PAAs migration to 10 % and 50 % ethanol surpassed that to 4 % acetic acid within a short 2-hour period. Moreover, PLA straws underwent varying degrees of shape changes before and after migration. Straws with poly(butylene succinate) resisted deformation compared to those without, indicating enhanced heat resistance, while poly(butyleneadipate-co-terephthalate) improved hydrolysis resistance. Importantly, swelling study unveiled swelling effect wasn't the primary factor contributing to the increased PAAs migration in ethanol food simulant, as there was no significant disparity in swelling degrees across different food simulants. FT-IR and DSC analysis revealed higher PAAs content in 50 % ethanol were due to highly concentrated polar ethanol disrupting hydrogen bonds and van der Waal forces holding PLA molecules together. Overall, minimizing contact between PLA straws and alcoholic foods is crucial to avoid potential safety risks posed by PAAs.


Assuntos
Aminas , Poliésteres , Análise Espectral Raman , Poliésteres/química , Análise Espectral Raman/métodos , Cromatografia Líquida/métodos , Aminas/análise , Aminas/química , Espectrometria de Massas/métodos , Contaminação de Alimentos/análise , Embalagem de Alimentos , Espectrometria de Massa com Cromatografia Líquida
2.
Methods Mol Biol ; 2852: 85-103, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235738

RESUMO

Although MALDI-TOF mass spectrometry (MS) is considered as the gold standard for rapid and cost-effective identification of microorganisms in routine laboratory practices, its capability for antimicrobial resistance (AMR) detection has received limited focus. Nevertheless, recent studies explored the predictive performance of MALDI-TOF MS for detecting AMR in clinical pathogens when machine learning techniques are applied. This chapter describes a routine MALDI-TOF MS workflow for the rapid screening of AMR in foodborne pathogens, with Campylobacter spp. as a study model.


Assuntos
Campylobacter , Farmacorresistência Bacteriana , Aprendizado de Máquina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Campylobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Microbiologia de Alimentos/métodos , Testes de Sensibilidade Microbiana/métodos , Doenças Transmitidas por Alimentos/microbiologia , Bactérias/efeitos dos fármacos
3.
Methods Mol Biol ; 2852: 255-272, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235749

RESUMO

Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.


Assuntos
Biomarcadores , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Listeria monocytogenes , Metabolômica , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/análise , Microbiologia de Alimentos/métodos , Listeria monocytogenes/metabolismo , Listeria monocytogenes/isolamento & purificação , Salmonella enterica/metabolismo , Escherichia coli O157/metabolismo , Escherichia coli O157/isolamento & purificação , Doenças Transmitidas por Alimentos/microbiologia , Metaboloma
4.
Methods Mol Biol ; 2854: 143-151, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192126

RESUMO

Protein lysine acetylation involved in the antiviral innate immunity contributes to the regulation of antiviral inflammation responses, including type 1 interferon production and interferon-stimulated gene expression. Thus, investigation of acetylated antiviral proteins is vital for the complete understanding of inflammatory responses to viral infections. Immunoprecipitation (IP) assay with anti-targeted-protein antibody or with acetyl-lysine affinity beads followed by immunoblot provides a classical way to determine the potential modified protein in the antiviral innate pathways, whereas mass spectrometry can be utilized to identify the accurate acetylation lysine residues or explore the acetyl-proteomics. We demonstrate here comprehensive methods of protein lysine acetylation determination in virus-infected macrophages and embryonic fibroblast cells or proteins-overexpressed HEK 293 T cells in the context of antiviral innate immunity.


Assuntos
Imunidade Inata , Lisina , Humanos , Acetilação , Lisina/metabolismo , Células HEK293 , Imunoprecipitação/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Animais , Espectrometria de Massas/métodos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/imunologia , Fibroblastos/virologia
5.
Methods Mol Biol ; 2848: 269-297, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240529

RESUMO

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Assuntos
Biotinilação , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Mapeamento de Interação de Proteínas , Fatores de Transcrição , Mapeamento de Interação de Proteínas/métodos , Humanos , Fatores de Transcrição/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Ligação Proteica , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Endonucleases , Enzimas Multifuncionais
6.
Clin Chim Acta ; 564: 119939, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197698

RESUMO

BACKGROUND AND AIMS: Current laboratory methods for opioid detection involve an initial screening with immunoassays which offers efficient but non-specific results and a subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmation which offers accurate results but requires extensive sample preparation and turnaround time. Direct Analysis in Real Time (DART) tandem mass spectrometry is evaluated as an alternative approach for accurate opioid detection with efficient sample preparation and turnaround time. MATERIALS AND METHODS: DART-MS/MS was optimized by testing the method with varying temperatures, operation modes, extraction methods, hydrolysis times, and vortex times. The method was evaluated for 12 opioids by testing the analytical measurement range, percent carryover, precision studies, stability, and method-to-method comparison with LC-MS/MS. RESULTS: DART-MS/MS shows high sensitivity and specificity for the detection of 6-acetylmorphine, codeine, hydromorphone, oxymorphone, hydrocodone, naloxone, buprenorphine, norfentanyl, and fentanyl in urine samples. However, its performance was suboptimal for norbuprenorphine, morphine and oxycodone. CONCLUSION: In this proof-of-concept study, DART-MS/MS is evaluated for its rapid quantitative definitive testing of opioids drugs in urine. Further research is needed to expand its application to other areas of drug testing.


Assuntos
Analgésicos Opioides , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Analgésicos Opioides/urina , Cromatografia Líquida/métodos , Fatores de Tempo
7.
J Environ Sci (China) ; 149: 500-511, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181662

RESUMO

Formic and acetic acids are the most abundant gaseous organic acids and play the key role in the atmospheric chemistry. In iodine-adduct chemical ionization mass spectrometry (CIMS), the low utilization efficiency of methyl iodide and humidity interference are two major issues of the vacuum ultraviolet (VUV) lamp initiated CIMS for on-line gaseous formic and acetic acids analysis. In this work, we present a new CIMS based on VUV lamp, and the ion-molecular reactor is separated into photoionization and chemical ionization zones by a reducer electrode. Acetone was added to the photoionization zone, and the VUV photoionization acetone provided low-energy electrons for methyl iodide to generate I-, and the addition of acetone reduced the amount of methyl iodide by 2/3. In the chemical ionization zone, a headspace vial containing ultrapure water was added for humidity calibration, and the vial changes the sensitivity as a function of humidity from ambiguity to well linear correlation (R2 > 0.95). With humidity calibration, the CIMS can quantitatively measure formic and acetic acids in the humidity range of 0%-88% RH. In this mode, limits of detection of 10 and 50 pptv are obtained for formic and acetic acids, respectively. And the relative standard deviation (RSD) of quantitation stability for 6 days were less than 10.5%. This CIMS was successfully used to determine the formic and acetic acids in the underground parking and ambient environment of the Shandong University campus (Qingdao, China). In addition, we developed a simple model based formic acid concentration to assess vehicular emissions.


Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Poluentes Atmosféricos/análise , Iodetos/análise , Iodetos/química , Raios Ultravioleta , Formiatos/análise , Formiatos/química , Atmosfera/química , Monitoramento Ambiental/métodos , Processos Fotoquímicos , Ácido Acético/análise , Ácido Acético/química , Hidrocarbonetos Iodados/análise , Hidrocarbonetos Iodados/química
8.
Food Chem ; 462: 140965, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197242

RESUMO

Perilla leaf oil (PLO) is a global premium vegetable oil with abundant nutrients and substantial economic value, rendering it susceptible to potential adulteration by unscrupulous entrepreneurs. The addition of cinnamon oil (CO) is one of the main adulteration avenues for illegal PLOs. In this study, new and real-time ambient mass spectrometric methods were developed to detect CO adulteration in PLO. First, atmospheric solids analysis probe tandem mass spectrometry combined with principal component analysis and principal component analysis-linear discriminant analysis was employed to differentiate between authentic and adulterated PLO. Then, a spectral library was established for the instantaneous matching of cinnamaldehyde in the samples. Finally, the results were verified using the SRM mode of ASAP-MS/MS. Within 3 min, the three methods successfully identified CO adulteration in PLO at concentrations as low as 5% v/v with 100% accuracy. The proposed strategy was successfully applied to the fraud detection of CO in PLO.


Assuntos
Cinnamomum zeylanicum , Contaminação de Alimentos , Folhas de Planta , Óleos de Plantas , Contaminação de Alimentos/análise , Óleos de Plantas/química , Óleos de Plantas/análise , Folhas de Planta/química , Cinnamomum zeylanicum/química , Perilla/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas/métodos
9.
Food Chem ; 462: 140920, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208732

RESUMO

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.


Assuntos
Lipopolissacarídeos , Macrófagos , Estresse Oxidativo , Extratos Vegetais , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Espectrometria de Massas em Tandem
10.
J Environ Sci (China) ; 150: 318-331, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306407

RESUMO

The relationship between chemodiversity and microbial succession in wastewater treatment plants (WWTPs) is highly intricate and bidirectional. The specific contribution of the microbial community to changes in the composition of dissolved organic matter (DOM) within different biological treatment units remains unclear, as does the reciprocal influence of DOM composition on microbial succession. In this study, spectroscopy ((Excitation-emission matrix) EEM-PARAFAC, Ultraviolet (UV)-spectrum, Fourier transform infrared spectrometer (FT-IR)), Liquid chromatograph mass spectrometer (LC‒MS) and Fourier transform ion cyclotron resonance (FT-ICR) MS along with high-throughput sequencing technology were used to explore the relationship between chemodiversity and microbial succession in WWTPs concerning seasonal changes. The results showed that WWTPs with anaerobic/anoxic/oxic (A2O) processes can metabolize and transform most of the wastewater DOM, and the anaerobic unit has the highest removal rate for fluorescence DOM (FDOM, 14.07%-64.43%); the anaerobic unit increased aliphatic/proteins and lignin-like molecules but decreased relative intensity, while the anoxic unit removed unsaturated hydrocarbons, aromatic structures, and lignin-like substances. The impact of seasonal changes on the composition and removal of FDOM and DOM in wastewater treatment is significant, and the variations that occur during different seasons affect microbial activity, as well as the production, degradation, and transformation of organic compounds throughout the wastewater treatment process. Network analysis shows that Parcubacteria_genera_incertae_sedis plays a crucial role in DOM chemodiversity, highlighting the crucial contribution of microbial communities to both the structure and operation of the entire DOM network. The results in this study could provide some theoretical and practical basis for guiding the process optimization of WWTPs.


Assuntos
Estações do Ano , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Microbiota , Bactérias
11.
Microbiome ; 12(1): 183, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342284

RESUMO

BACKGROUND: Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil-microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and our aim was to understand how phytochemical signals selectively enrich specific microbial taxa and functionalities in agricultural soils. RESULTS: Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms. In these microcosms, we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. Additionally, we identified cover crop exudates exclusively enriched for bacterial nitrite oxidizers, while control microcosms were discriminated for nitrogen transport, mineralization, and assimilation, highlighting distinct changes in microbial nitrogen cycling in response to chemical inputs. CONCLUSIONS: We highlight that root exudate amendments alter microbial community function (i.e., N cycling) and microbial phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, revealing the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multi-omics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production. Video Abstract.


Assuntos
Produtos Agrícolas , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Solo , Raízes de Plantas/microbiologia , Produtos Agrícolas/microbiologia , Solo/química , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Agricultura , Reguladores de Crescimento de Plantas/metabolismo , Exsudatos de Plantas/metabolismo , Sorghum/metabolismo , Sorghum/microbiologia
12.
Intern Med ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293984

RESUMO

We herein report an 81-year-old woman with no significant medical history who developed a fever, headache, and right eyelid swelling. Magnetic resonance imaging (MRI) showed eye proptosis, sphenoid opacity, enlarged cavernous sinus, and dilated right superior ophthalmic vein (SOV). Subsequent enhanced MRI revealed intraventricular debris and thrombosis in the right SOV and the left transverse and sigmoid sinuses. Blood cultures were positive for Aggregatibacter aphrophilus, as identified by mass spectrometry. The patient responded well to antibiotics, anticoagulants, and surgical drainage of sphenoid sinusitis. To our knowledge, this is the first case of A. aphirophilus sphenoid sinusitis causing orbital cellulitis, meningitis, and venous sinus thrombosis.

13.
J Sep Sci ; 47(18): e2400466, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39294846

RESUMO

Thyroid hormones (THs), including triiodothyronine (T3), thyroxine (T4), and their metabolites, are essential for regulating development, growth, and energy metabolism. Thyroglobulin (Tg) produced by thyroid follicular cells acts as an essential substrate for TH synthesis. The combination of THs with Tg is a widely used serological laboratory test for thyroid function assessment. Early detection and timely intervention are significant for preventing and managing thyroid disease. In recent years, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for the precise detection of small molecular analytes and steroid hormones in clinical practice as a result of its high sensitivity and specificity. While LC-MS/MS has been increasingly used for detecting THs and Tg recently, its application in clinical practice is still in its early stages. Recent advances in the assessment of thyroid metabolism using LC-MS/MS in clinical samples published during 2004-2023 were reviewed, with a special focus on the use of this technique for quantifying molecules involved in thyroid diseases.


Assuntos
Espectrometria de Massas em Tandem , Tireoglobulina , Hormônios Tireóideos , Espectrometria de Massas em Tandem/métodos , Humanos , Tireoglobulina/análise , Cromatografia Líquida/métodos , Hormônios Tireóideos/análise , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/sangue , Doenças da Glândula Tireoide/diagnóstico , Doenças da Glândula Tireoide/metabolismo , Doenças da Glândula Tireoide/sangue
14.
Sci Rep ; 14(1): 21715, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289443

RESUMO

Ciguatera poisoning (CP) is a severe global public health problem caused by the consumption of seafood products contaminated with ciguatoxins (CTXs). The growing demand for seafood products requires high-throughput testing for CTX-susceptible seafood, however complex extraction and slow cleanup methods inhibit this goal. Herein, several methods for extracting CTXs from fish tissue were established and compared; these methods are sensitive, specific, and valid while achieving higher sample extraction throughput than currently established protocols. The trial fish material was generated from multiple species, with different physical conditions (wet and freeze-dried tissue), and naturally contaminated with various CTXs (i.e., CTX-1B, CTX-3C, and C-CTX-1), thus ensuring these methods are robust and broadly applicable. The extraction methods used were based on mechanical maceration with acetone or methanol or enzymatic digestion followed by acetone and ethyl acetate extraction. Crude extracts were investigated for CTX-like toxicity using an in vitro mouse neuroblastoma (N2a) cell-based assay (CBA). Among the three methods, there was no significant difference in toxin estimates (p = 0.219, two-way ANOVA), indicating their interchangeability. For speed (> 16 samples/day), accuracy (100%), and CTX analog retention confirmation by liquid chromatography-tandem mass spectrometry (LC‒MS/MS), the preferred extraction methods were both methanol and enzyme-based. All extraction methods post hoc confirmation of CTX analogs successfully met international seafood market-based CTX contaminant guidance. These methods can drastically increase global CTX screening capabilities and subsequently relieve sample processing bottlenecks, inhibiting environmental and human health-based CTX analysis.


Assuntos
Ciguatoxinas , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Animais , Alimentos Marinhos/análise , Ciguatera , Peixes , Humanos , Camundongos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Testes de Toxicidade/métodos
15.
Autophagy ; : 1-16, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39245437

RESUMO

Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require de novo protein synthesis. Historically, autophagy has been regarded as nonselective; however, it is now clear that different stimuli can lead to the selective degradation of cellular components via selective autophagy receptors (SARs). Due to its selective nature and the existence of multiple degradation pathways potentially acting in concert, monitoring of autophagy flux, i.e. selective autophagy-dependent protein degradation, should address this complexity. Here, we introduce a targeted proteomics approach monitoring abundance changes of 37 autophagy-related proteins covering process-relevant proteins such as the initiation complex and the Atg8-family protein lipidation machinery, as well as most known SARs. We show that proteins involved in autophagosome biogenesis are upregulated and spared from degradation under autophagy-inducing conditions in contrast to SARs, in a cell-line dependent manner. Classical bulk stimuli such as nutrient starvation mainly induce degradation of ubiquitin-dependent soluble SARs and not of ubiquitin-independent, membrane-bound SARs. In contrast, treatment with the iron chelator deferiprone leads to the degradation of ubiquitin-dependent and -independent SARs linked to mitophagy and reticulophagy/ER-phagy. Our approach is automatable and supports large-scale screening assays paving the way to (pre)clinical applications and monitoring of specific autophagy flux.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; ATG: autophagy related; BafA1: bafilomycin A1; BNIP1: BCL2 interacting protein 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3-like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCPG1: cell cycle progression 1; CV: coefficients of variations; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DFP: deferiprone; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; GABARAPL: GABA type A receptor associated protein like; LC: liquid chromatography; LOD: limit of detection; LOQ: limit of quantification; MAP1LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NCOA4: nuclear receptor coactivator 4; NBR1: NBR1 autophagy cargo receptor; NUFIP1: nuclear FMR1 interacting protein 1; OPTN: optineurin; PHB2: prohibitin 2; PNPLA2/ATGL: patatin like phospholipase domain containing 2; POI: protein of interest; PTM: posttranslational modification; PRM: parallel reaction monitoring; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RPS6KB1: ribosomal protein S6 kinase B1; RTN3: reticulon 3; SARs: selective autophagy receptors; SQSTM1/p62: sequestosome 1; STBD1: starch binding domain 1; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TNIP1: TNFAIP3 interacting protein 1; TOLLIP: toll interacting protein; ULK1: unc-51 like autophagy activating kinase 1; WBP2: WW domain binding protein 2; WDFY3/Alfy: WD repeat and FYVE domain containing 3; WIPI2: WD repeat domain, phosphoinositide interacting 2.

16.
Pharmacol Res ; 209: 107406, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278298

RESUMO

Affinity-oriented online ligand screening with LC coupled to different detectors is widely popular to capture active compounds from herbal medicines (HMs). However, false-positive extensively occurs because insufficient information is recorded for the existence and stability of ligand-protein complex. Here, efforts were made to advance the hit confidences via configuring post-column infusion-LC-energy-resolved-affinity MS (PCI-LC-ER-AMS) to achieve "four-in-one" monitoring of: 1) response decrement of potential ligands; 2) response decrement of protein; 3) ions relating to ligand-protein complexes; and 4) ligand-protein binding strength. Ligand fishing for Cyt C from HMs was conducted as a proof-of-concept. For utility justification, a mimic sample containing twelve well-defined ligands and two negative controls underwent LC separation and met Cyt C prior to Qtof-MS measurements. Compared to Cyt C- or ligand-free assay, twelve ligands instead of negative controls showed response decrements that were consistent with twelve negative peaks observed at retention times corresponding to the ligands in Cyt C ion current chromatogram. Serial ions correlating to each ligand-Cyt C complex were observed. After recording breakdown graphs, optimal collision energy (OCE) corresponding to the non-covalent bond dissociation was positively correlated with binding strength. Two HMs including Scutellariae Radix (SR) and Aconiti Lateralis Radix Preparata were investigated. Consequently, 24 compounds were merely fished from SR, and particularly, flavonoid glycosides exhibited greater OCEs and also binding strengths over aglycones. Affinity assays and cellular evaluations consolidated the significant interactions between each captured compound and Cyt C. Overall, PCI-LC-ER-AMS is eligible for confidence-enhanced online ligand screening for Cyt C from HMs through "four-in-one" measurement.

17.
Planta ; 260(4): 97, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278990

RESUMO

MAIN CONCLUSION: Microscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters. Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit's color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as "wax bloom". Previous reports have suggested that some melon (Cucumis melo L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named Wi. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC-MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, n-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.


Assuntos
Frutas , Ceras , Cor , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fenótipo , Pigmentação/genética , Ceras/metabolismo , Ceras/química
18.
Chemosphere ; 365: 143314, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278326

RESUMO

The significant rise in antidepressant consumption in recent years was accentuated by COVID-19 pandemic. Among these antidepressant, fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), is the most prescribed worldwide. The present study investigated its bioaccumulation and metabolization in the mussel Mytilus galloprovincialis, generally recognized as a reliable bioindicator for assessing environmental quality and the accumulation of various contaminants. Mussels were exposed to a nominal concentration of fluoxetine (3.1 µg/L) for 28 days. Mussels were sacrificed at day 2, 7, 14 and 28 of exposure. The order of accumulation level was gills > digestive glands > soft tissues, and a regular increase in fluoxetine and norfluoxetine was observed across the various sampling days for both digestive glands and soft tissues. The calculated bioconcentration factor (BCF) ranged from 253 at D2 to 1734 at D28 for fluoxetine, and pseudo-BCF from 7 at D2 to 64 at D28 for norfluoxetine. Non-targeted approaches highlighted ten metabolites, which are reported for the first time in Mytilus, in addition to norfluoxetine. Notably, this study highlighted two phase I metabolites and one phase II metabolite previously unreported. These findings contribute to the understanding of fluoxetine accumulation and metabolism in Mytilus and enhance the knowledge of pharmaceuticals detoxification processes in non-target organisms.

19.
Clin Chim Acta ; 565: 119965, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284378

RESUMO

BACKGROUND AND AIMS: Collecting clinical samples without inconveniencing participants is desirable. The profile of metabolites in mouth-rinsed water is similar to that in saliva. However, the intra- and inter-day variations in unstimulated or stimulated saliva metabolites from mouth-rinsed water have yet to be clarified. Thus, we aimed to fill this research gap using capillary electrophoresis-mass spectrometry metabolomics. MATERIALS AND METHODS: We collected mouth-rinsed water from 15 healthy participants at 9:00, 11:30, 14:00, and 16:30 daily for 3 days. In total, 509 metabolite concentrations from 180 samples were obtained using capillary electrophoresis time-of-flight mass spectrometry. Variations in each metabolite were evaluated using the Wilcoxon signed-rank test to determine at which time/day significant differences occurred after removing metabolites without significant changes using the Friedman test. RESULTS: Of 167 frequently detected metabolites, 100 exhibited intra-day variations, and none exhibited inter-day variations. Intra-day variations were classified into four patterns, and the intra-day variation in each metabolite was assessed. The variations may reflect elapsed time after meals, oral cleaning, or circadian rhythms. CONCLUSION: This study could serve as a reference for improving the design of future clinical trials and the accuracy of metabolome analysis of mouth-rinsed water samples collected at different dates and times.

20.
Vet Parasitol ; 331: 110295, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222580

RESUMO

Protozoal diarrhea caused by Tritrichomonas foetus (blagburni) is a prevalent, lifelong, and globally distributed burden in domestic cats. Treatment is limited to the use of 5-nitroimidazoles and treatment failure is common. The repurposed gold salt compound auranofin has killing activity against diverse protozoa in vitro but evidence of efficacy in naturally occurring protozoal infections is lacking. This exploratory study investigated the efficacy and safety of auranofin for treatment of cats with naturally occurring, 5-nitroimidazole-resistant, T. foetus infection. The minimum lethal concentration (MLC) of auranofin against 5 isolates of feline T. foetus was determined under aerobic conditions in vitro. Healthy cats and cats with T. foetus infection were treated with immediate release auranofin (range, 0.5-3 mg/cat for 7 days) or guar gum-coated auranofin capsules (0.5 or 3 mg/cat for 7 days). Adverse effects were monitored by clinical signs and clinicopathologic testing. Efficacy was determined by fecal consistency score, bowel movement frequency, and single-tube nested PCR of feces for T. foetus rDNA. Fecal samples were assayed for concentrations of auranofin, known and predicted metabolites of auranofin, gold containing molecules, and total gold content using HPLC, LC-MS, ion mobility-MS, and ICP-MS, respectively. Auranofin was effective at killing isolates of feline T. foetus at MLC ≥ 1 µg/ml. Treatment of cats with T. foetus infection with either immediate release auranofin or a colon-targeted guar gum-coated tablet of auranofin did not eradicate infection. Treatment failure occurred despite fecal concentrations of gold that met or exceeded the equivalent MLC of auranofin. Neither auranofin, known or predicted metabolites of auranofin, nor any gold-containing molecules >100 Da could be detected in fecal samples of treated cats. Adverse effects associated with auranofin treatment were common but minor. These studies identify that in vitro susceptibility test results of auranofin may not translate to treatment effectiveness in vivo even when achieving gold concentrations equivalent to the MLC of auranofin in the target environment. These studies further establish the absence of any predicted or unpredicted gold containing metabolites in feces after oral administration of auranofin.


Assuntos
Auranofina , Doenças do Gato , Infecções Protozoárias em Animais , Tritrichomonas foetus , Animais , Tritrichomonas foetus/efeitos dos fármacos , Gatos , Doenças do Gato/tratamento farmacológico , Doenças do Gato/parasitologia , Auranofina/farmacologia , Auranofina/uso terapêutico , Infecções Protozoárias em Animais/tratamento farmacológico , Infecções Protozoárias em Animais/parasitologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Fezes/parasitologia , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA