Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
1.
Methods Mol Biol ; 2835: 215-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105918

RESUMO

Cancer stem cells (CSCs) have emerged as an attractive research interest due to their prominent role in development of the tumors. CSCs are rare dormant cells that can self-renew and maintain tumor development and heterogeneity. A better understanding of CSCs can improve tumor classification and contribute toward the development of novel therapeutic approaches to fight cancer. Hence, it is of immense importance to comprehend the basic function of CSCs in tumor formation, which can only be possible by devising perfected methodologies to isolate, detect, and characterize them. In this chapter, we outline the key protocols to culture, identify, and isolate CSCs from solid tumors to further advance basic and clinical investigation related to CSCs and their role in tumor biology.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/diagnóstico , Separação Celular/métodos , Animais , Técnicas de Cultura de Células/métodos , Biomarcadores Tumorais/metabolismo , Citometria de Fluxo/métodos
2.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124977

RESUMO

The steady low-Reynolds-number rotation of a chain of coaxial soft spheres (each with an impermeable hard core covered by a permeable porous layer) about the axis in a viscous fluid is analyzed. The particles may be unequally spaced, and may differ in the permeability and inner and outer radii of the porous surface layer as well as angular velocity. By using a method of boundary collocation, the Stokes and Brinkman equations for the external fluid flow and flow within the surface layers, respectively, are solved semi-analytically. The particle interaction effect increases as the relative gap thickness between adjacent particles or their permeability decreases, which can be significant as the gap thickness approaches zero. A particle's hydrodynamic torque is reduced (its rotation is enhanced) when other particles rotate in the same direction at equivalent or greater angular velocities, but increases (its rotation is hindered) when other particles rotate in the opposite direction at arbitrary angular velocities. For particles with different radii or permeabilities, the particle interaction has a greater effect on smaller or more permeable particles than on larger or less permeable particles. For the rotation of three particles, the presence of the third particle can significantly affect the hydrodynamic torques acting on the other two particles. For the rotation of numerous particles, shielding effects between particles can be substantial. When the permeability of porous layers is low, relative fluid motion is barely felt by the hard cores of the soft particles. The insights gained from this analysis on the effects of interactions among rotating soft particles may be of great importance in many physicochemical applications of colloidal suspensions.

3.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124997

RESUMO

Semiconductor hollow spheres have garnered significant attention in recent years due to their unique structural properties and enhanced surface area, which are advantageous for various applications in catalysis, energy storage, and sensing. The present study explores the surfactant-assisted synthesis of bismuth ferrite (BiFeO3) hollow spheres, emphasizing their enhanced visible-light photocatalytic activity. Utilizing a novel, facile, two-step evaporation-induced self-assembly (EISA) approach, monodisperse BiFeO3 hollow spheres were synthesized with a narrow particle size distribution. The synthesis involved Bi/Fe citrate complexes as precursors and the triblock copolymer Pluronic P123 as a soft template. The BiFeO3 hollow spheres demonstrated outstanding photocatalytic performance in degrading the emerging pollutants Rhodamine B and metronidazole under visible-light irradiation (100% degradation of Rhodamine B in <140 min and of metronidazole in 240 min). The active species in the photocatalytic process were identified through trapping experiments, providing crucial insights into the mechanisms and efficiency of semiconductor hollow spheres. The findings suggest that the unique structural features of BiFeO3 hollow spheres, combined with their excellent optical properties, make them promising candidates for photocatalytic applications.

4.
Adv Sci (Weinh) ; : e2403802, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140249

RESUMO

Exploring new carbon-based electrode materials is quite necessary for enhancing capacitive deionization (CDI). Here, hollow mesoporous carbon spheres (HMCSs)/metal-organic frameworks (MOFs) derived carbon materials (NC(M)/HMCSs and NC(M)@HMCSs) are successfully prepared by interface-coating and space-encapsulating design, respectively. The obtained NC(M)/HMCSs and NC(M)@HMCSs possess a hierarchical hollow nanoarchitecture with abundant nitrogen doping, high specific surface area, and abundant meso-/microporous pores. These merits are conducive to rapid ion diffusion and charge transfer during the adsorption process. Compared to NC(M)/HMCSs, NC(M)@HMCSs exhibit superior electrochemical performance due to their better utilization of the internal space of hollow carbon, forming an interconnected 3D framework. In addition, the introduction of Ni ions is more conducive to the synergistic effect between ZIF(M)-derived carbon and N-doped carbon shell compared with other ions (Mn, Co, Cu ions). The resultant Ni-1-800-based CDI device exhibits excellent salt adsorption capacity (SAC, 37.82 mg g-1) and good recyclability. This will provide a new direction for the MOF nanoparticle-driven assembly strategy and the application of hierarchical hollow carbon nanoarchitecture to CDI.

5.
J Colloid Interface Sci ; 677(Pt B): 1-11, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39128196

RESUMO

To promote the greening and economization of industrial production, the development of advanced catalyst manufacturing technology with high activity and low cost is an indispensable part. In this study, nitrogen-doped hollow carbon spheres (NHCSs) were used as anchors to construct a supramolecular coating formed by the self-assembly of boron clusters and ß-cyclodextrin by surface crystallization strategy, with the help of the weak reducing agent characteristics of boron clusters, highly dispersed ultra-small nano-palladium particles were in-situ embedded on the surface of NHCSs. The deoxygenation hydrogenation of nitroaromatics and the reduction of nitrate to ammonia were used as the representatives of thermal catalytic reduction and electrocatalytic reduction respectively. The excellent properties of the constructed Pd/NHCSs were proved by the probe reaction. In the catalytic hydrogenation of nitroaromatics to aminoaromatics, the reaction kinetic rate and activation energy are at the leading level. At the same time, the constructed Pd/NHCSs can also electrocatalytically reduce nitrate to high value-added ammonia with high activity and selectivity, and the behavior of Pd/NHCSs high selectivity driving nitrate conversion was revealed by density functional theory and in situ attenuated total reflection Fourier transform infrared (ATRFTIR) technique. These results all reflect the feasibility and superiority of in-situ anchoring ultra-small nano-metals as catalysts by surface crystallization to build a supramolecular cladding with reducing properties, which is an effective way to construct high-activity and low-cost advanced catalysts.

6.
Mikrochim Acta ; 191(9): 552, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167265

RESUMO

N-doped hollow carbon spheres (NHCSs) with different shell thicknesses are constructed using various amounts of SiO2 precursor. An interconnected framework with diminished wall thickness ensures an efficient and continuous electron transport which helps to enhance the performance of NHCS. Improvement of the electrocatalytic performance was shown in the determination of antibiotic drug chloramphenicol (CAP) due to the unique hollow thin shell morphology, ample defect sites, accessible surface area, higher surface-to-volume ratio and an synergistic effect. Boosted electrocatalytic activity of 1.5 N-doped HCS (1.5 NHCS) was applied to detect CAP with a linear range and detection limit of 1-1150 µM and 0.098 µM (n = 3), respectively, with superior storage stability and considerable sensitivity. These results suggest that the proposed work can be successfully applied to the determination of CAP in milk and water samples.


Assuntos
Antibacterianos , Carbono , Cloranfenicol , Técnicas Eletroquímicas , Limite de Detecção , Leite , Cloranfenicol/análise , Cloranfenicol/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Carbono/química , Antibacterianos/análise , Leite/química , Animais , Poluentes Químicos da Água/análise , Eletrodos , Nitrogênio/química , Dióxido de Silício/química
7.
Angew Chem Int Ed Engl ; : e202411066, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092491

RESUMO

Energy storage in supercapacitors and hybrid zinc ion capacitors (ZIC) using porous carbon materials offers a promsing alternative method for clean energy solutions. The unique combination of hierarchical porous structure and nitrogen doping in these materials has demonstrated significant capacity for energy storage. Nevertheless, the full potential of these materials, particularly the relationship between pore structure configuration and performance, remains underexplored. Herein, a confined pyrolysis strategy based on the polymerization characteristics of polydopamine (PDA) was developed to construction of hollow carbon spheres with microporous/mesoporous dual shell structure. The depth of micropores and cavity can be controlled by adjusting the duration of heat treatment and hydrothermal treatment, in accordance with the decomposition and polymerization characteristics of PDA. Due to the elasticity of this structure, the relationship between the micro/mesoporous depth of the prepared carbon spheres and the energy storage performance in supercapacitors and ZIC is established. Through optimizing the ion transport capacity of carbon spheres and considering the influence of its internal cavity structure on energy storage, the resulting carbon spheres exhibit high specific capacitance of 389 F g-1 in supercapacitor and specific capacitance of 260 F g-1 and excellent stability with 99.3% retention after 30000 chare/discharge cycles in ZIC.

8.
Int J Biol Macromol ; : 134930, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39179068

RESUMO

Hollow carbon spheres (HCSs) have attracted broad attention in aqueous zinc-ion hybrid supercapacitors (ZIHSCs) owing to their distinctive properties. However, traditional methods for fabricating HCSs face limitations, including complex multistep procedures, the use of corrosive chemicals, and stringent reaction conditions. In this work, biomass-based poly(γ-glutamic acid)/Ni2+/melamine/chitosan nanoparticles were used as the precursors to fabricate N/O co-doped hollow graphite carbon spheres (HGCSs). Thanks to the appropriate hydrophilic characteristic, specific surface area, pore size distribution, and electrical conductivity, the fabricated HGCSs cathode exhibited superior electrochemical properties. The assembled HGCSs-based ZIHSCs device showed a satisfactory specific capacitance of 133.2 mAh·g-1 at a current density of 1.0 A·g-1, high energy densities of 75.2 Wh·kg-1 at 10,000 W·kg-1 and 107.9 Wh·kg-1 at 1000 W·kg-1, respectively. Additionally, the assembled HGCSs-based ZIHSCs device displayed an exceptional cycling stability, enduring up to 10,000 cycles at 0.5 A·g-1 with a capacity retention rate of 98.1 %. This work provides a facile and novel strategy to prepare superior electrochemical performance biomass-based HGCSs cathode for ZIHSCs.

9.
ACS Nano ; 18(34): 23067-23076, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39145618

RESUMO

Membrane-induced interactions play an important role in organizing membrane proteins. Measurements of the interactions between two and three membrane deforming objects have revealed their nonadditive nature. They are thought to lead to complex many-body effects, however, experimental evidence is lacking. We here present an experimental method to measure many-body effects in membrane-mediated interactions using colloidal spheres placed between a deflated giant unilamellar vesicles and a planar substrate. The confined colloidal particles cause a large deformation of the membrane while not being physicochemically attached to it and interact through it. Two particles attract with a maximum force of 0.2 pN. For three particles, compact equilateral triangles were preferred over linear arrangements. We use numerical energy minimization to establish that the attraction stems from a reduction in the membrane-deformation energy caused by the particles. Confining up to 36 particles, we find a preference for hexagonally close packed clusters. However, with increasing number of particles the order of the confined particles decreases, at the same time, diffusivity of the particles increases. Our experiments show that the nonadditive nature of membrane-mediated interactions affects the interactions and arrangements and ultimately leads to spherical aggregates with liquid-like order of potential importance for cellular processes.

10.
Polymers (Basel) ; 16(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39204475

RESUMO

To understand the phase behaviors of polyelectrolyte solutions, we provide two analytical methods to formulate a molecular equation of state for a system of fully charged polyanions (PAs) and polycations (PCs) in a monomeric neutral component, based on integral equation theories. The mixture is treated in a primitive and restricted manner. The first method utilizes Blum's approach to charged hard spheres, incorporating the chain connectivity contribution by charged spheres via Stell's cavity function method. The second method employs Wertheim's multi-density Ornstein-Zernike treatment of charged hard spheres with Baxter's adhesive potential. The pressures derived from these methods are compared to available molecular dynamics simulations data for a solution of PAs and monomeric counterions as a limiting case. Two-phase equilibrium for the system is calculated using both methods to evaluate the relative strength of phase segregation that leads to complex coacervation. Additionally, the scaling exponents for a selected solution near its critical point are examined.

11.
Food Chem ; 460(Pt 2): 140577, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094341

RESUMO

Egg yolk production processed after separating egg white is a common method to shorten cycle, but its taste quality will change even the vitelline membrane is intact. This might be related to the slight non-destructive deformation causing redistribution and fusion of protein-lipid assemblies within the egg yolk spheres. We investigated the mechanism of the change in thermal gel properties under slight deformation. The results of microscopic structural morphology revealed that the whole boiled egg yolk (WEY) underwent a transition in protein-lipid assembly morphology within yolk spheres, which changed from local aggregation to disordered fusion in shaken boiled egg yolks (SEYs). The spectroscopic and physicochemical properties analysis demonstrated that the redistribution of protein-lipid assemblies gave rise to marked changes in water migration, texture properties, molecular interactions, and oral sensation simulation of egg yolk thermal gels. This is benefit to guide the regulation of the taste quality egg yolk products in industry.


Assuntos
Galinhas , Proteínas do Ovo , Gema de Ovo , Géis , Lipídeos , Gema de Ovo/química , Géis/química , Animais , Proteínas do Ovo/química , Lipídeos/química , Temperatura Alta , Culinária
12.
Bioresour Technol ; 410: 131237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127355

RESUMO

Zero-valent iron acts as an indirect electron donor, supplying ferrous iron for the nitrate-dependent ferrous oxidation (NDFO) process. The addition of activated carbon (AC) increased the specific NDFO activity in situ and ex situ by 0.4 mg-N/(d·g VSS) and 2.2 mg-N/(d·g VSS), respectively, due to the enrichment of NDFO bacteria. Furthermore, AC reduced the nitrous oxide emission potential of the sludge, a mechanism that metagenomic analysis suggests may act as a cellular energy storage strategy. During a 196-day experiment, a total nitrogen removal efficiency of 53.7 % was achieved, which may be attributed to the upregulation of key genes involved in iron oxidation and denitrification. Based on these findings, a model involving pilin, 'nanowires,' and a cyc2/?→/(FoxE→FoxY)/?→cymA/Complex III/?-mediated pathway for extracellular electron uptake was proposed. Overall, this work provides a feasible strategy for enhancing the nitrogen removal performance of the ZVI-NDFO process.


Assuntos
Processos Autotróficos , Desnitrificação , Elétrons , Ferro , Nitrogênio , Ferro/metabolismo , Nitrogênio/metabolismo , Carvão Vegetal/química , Oxirredução , Esgotos/microbiologia , Bactérias/metabolismo , Reatores Biológicos , Nitratos/metabolismo
13.
J Colloid Interface Sci ; 677(Pt B): 472-481, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39154440

RESUMO

Sheets stacking of Ti3C2Tx MXene dramatically reduces the ion-accessible sites and brings a sluggish reaction kinetics. While introducing transitional metal oxides or polymers in the MXene films could partially alleviate such issue, their enhanced performances are realized at the expense of electrode conductivity or cycling stability. Herein, we report an alternative spacer of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hollow spheres (HSs) which are fabricated by a facile template-assisted interfacial polymerization. The Fe3+ ions electrostatically adsorbed on the -SO3H groups of the sulfonated polystyrene spheres (S-PS) initiate the polymerization of uniform PEDOT shell, yielding uniform PEDOT HSs after dissolving the S-PS core. Introducing these PEDOT HSs in the MXene film generates the highly flexible MXene-PEDOT (MP) films featuring hierarchically porous network and high conductivity (283 S cm-1). Consequently, specific capacitance of 218 F g-1 at 3  mV s-1, along with a forty-folds decrease in relaxation time constant (1.0 vs 39.8 s) has been achieved. Moreover, the MP film also exhibits nearly thickness-independent capacitive performances with film thickness in the range of 10-46 µm. A maximal energy density of 21.2 µWh cm-2 at 1015 µW cm-2 together with 92 % capacitance retention over 5000 cycles are achieved for the MP-based solid-state supercapacitor. The intrinsic high conductivity, excellent mechanical flexibility and good structure integrity are responsible for such outstanding electrochemical behaviors.

14.
Regen Biomater ; 11: rbae087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055304

RESUMO

The treatment of peripheral neuropathy resulting from diabetes primarily emphasizes neurotrophic medications. However, a growing body of clinical studies indicates that neuroinflammation plays a significant role in the pathogenesis of neuropathic pain. This has spurred active exploration of treatment strategies leveraging nanomedicine for diseases, aiming for superior therapeutic outcomes. In this context, we have developed biodegradable nanoparticles made of polylactic-co-glycolic acid, loaded with triptolide (pCel), designed to alleviate somatic cell neuropathic pain induced by diabetes. Treatment with pCel notably reduced levels of reactive oxygen species and apoptosis in vitro. Furthermore, the progression of streptozotocin-induced diabetes, characterized by elevated renal function indices (blood urea nitrogen, creatinine), liver function indices (bilirubin, alkaline phosphatase) and decreased levels of albumin and globulin, was mitigated following pCel administration. Importantly, oral treatment with pCel significantly inhibited mechanical allodynia and the activation of the sciatic glial cells in diabetic rats. These findings indicate that this synthetic, biodegradable nanomedicine exhibits excellent stability, biocompatibility and catalytic activity, making it a promising and innovative approach for the management of chronic pain conditions associated with diabetic neuropathy.

15.
J Colloid Interface Sci ; 674: 686-694, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950467

RESUMO

The energy storage capacity of porous carbon materials is closely tied to their surface structure and chemical properties. However, developing an innovative and straightforward approach to synthesize yolk-shell carbon spheres (YCs) remains a great challenge till date. Herein, we prepared a series of porous nitrogen-doped yolk-shell carbon spheres (NYCs) via a "pyrolysis-capture" method. This method involves coating the resorcinol-formaldehyde (RF) resin sphere with a layer of compact silica shell induced by 2-methylimidazole (ME) catalysis to produce a confined nano-space. Based on the confined effect of compact silica shell, volatile gases emitted from the RF resin and ME during pyrolysis can not only diffuse into the pores of the RF resin but can also be captured to form an outer carbon shell. This results in the tunable structures of NYCs materials. As the pyrolysis temperature rises, the shell thickness of NYCs reduces, the pore size expands, the roughness increases, and the N/O content of surface elements is enhanced. Notably, as an electrode material used forsupercapacitors,the optimized NYCs-800 exhibits excellent performance with a capacitance of 301.2F g-1 at the current density of 1 A/g and outstanding cycling life stability of 96.1% after 10,000 cycles. These results signify that controlling the surface structure and chemical properties of NYCs materials is an effective approach for constructing advanced energy storage materials.

16.
J Colloid Interface Sci ; 674: 852-861, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955016

RESUMO

Lithium-selenium (Li-Se) batteries are considered promising alternatives to lithium-ion batteries due to their higher volumetric capacity and energy density. However, they still face limitations in efficiently utilizing the active selenium. Here, we develop surface-functionalized mesoporous hollow carbon nanospheres as the selenium host. By using KOH activation, the surface of the carbon nanospheres is functionalized with hydroxyl groups, which greatly improve the utilization of selenium and facilitate the conversion of lithium selenides, leading to much higher capacities compared to ZnCl2 activation and untreated carbon nanospheres. Theory and experimental evidence suggest that surface hydroxyl groups can enhance the reduction conversion of polyselenides to selenides and facilitate the oxidation reaction of selenides to elemental selenium. In-situ and ex-situ characterization techniques provided additional confirmation of the hydroxyl groups electrochemical durability in catalyzing selenium conversion. The meticulously engineered Se cathode demonstrates a high specific capacity of 594 mA h g-1 at 0.5C, excellent rate capability of 464 mA h g-1 at 2C, and a stable cycling performance of 500 cycles at 2C with a capacity retention of 84.8 %, corresponding to an ultra-low-capacity decay rate of 0.0144 % per cycle, surpassing many reported lithium-selenium battery technologies.

17.
J Colloid Interface Sci ; 674: 959-971, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959741

RESUMO

Despite the bright fortune of lithium-sulfur (Li-S) batteries as one of the next-generation energy storage systems owing to the ultrahigh theoretical energy density and earth-abundance of sulfur, crucial challenges including polysulfide shuttling and low sulfur content of sulfur cathodes need to be overcome before the commercial survival of sulfur cathodes. Herein, cobalt/carbon spheres embedded CNTs (Co-C-CNTs) are rationally designed as multifunctional hosts to synergistically address the drawbacks of sulfur cathodes. The host is synthesized by a facile pyrolysis using Co(OH)2 template and followed with the controllable etching process. The hierarchical porous structure owning high pore volume and surface area can buffer the volume change, physically confine polysulfides, and provide conductive networks. Besides, partially remained metallic cobalt nanoparticles are favorable for chemical adsorption and conversion of polysulfides, as validated by density functional theory simulations. With the combination of above merits, the S@Co-C-CNTs cathodes with a high sulfur content of 80 wt% present a superior initial capacity (1568 mAh g-1 at 0.1C) with ultrahigh 93.6% active material utilization, and excellent rate performance (649 mAh g-1 at 2C), providing feasible strategies for the optimization of cathodes in metal-sulfur batteries.

18.
Biomater Adv ; 163: 213967, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068744

RESUMO

The healing of skin wounds is a continuous and coordinated process, typically accompanied by microbial colonization and growth. This may result in wound infection and subsequent delay in wound healing. Therefore, it is of particular importance to inhibit the growth of microorganisms in the wound environment. In this study, magnesium hydroxide-doped polycaprolactone (PCL/MH) nanofibrous spheres were fabricated by electrospinning and electrospray techniques to investigate their effects on infected wound healing. The prepared PCL/MH nanofibrous spheres had good porous structure and biocompatibility, providing a favorable environment for the delivery and proliferation of adipose stem cells. The incorporation of MH significantly enhanced the antimicrobial properties of the spheres, in particular, the inhibition of the growth of S. aureus and E. coli. We showed that such PCL/MH nanofibrous spheres had good antimicrobial properties and effectively promoted the regeneration of infected wound tissues, which provided a new idea for the clinical treatment of infected wounds.


Assuntos
Escherichia coli , Hidróxido de Magnésio , Nanofibras , Poliésteres , Pele , Staphylococcus aureus , Cicatrização , Cicatrização/efeitos dos fármacos , Nanofibras/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Poliésteres/química , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/lesões , Animais , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química
19.
ACS Appl Mater Interfaces ; 16(31): 41351-41362, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39049692

RESUMO

Water-soluble polymers with the ability to complex metal ions through complexing ligands have attracted significant interest in diverse domains, such as optical or catalyst applications. In this paper, we successfully synthesized, through a one-pot process combining polymerization-induced self-assembly and reversible addition-fragmentation chain transfer polymerization, aqueous dispersions of terpyridine-decorated poly[poly(ethylene glycol)methyl ether methacrylate]-b-poly(methyl methacrylate) (tpy-PPEGMA-b-PMMA) amphiphilic block copolymers. The in-situ formation of well-defined amphiphilic block copolymers and their self-assembly led to nanosphere latex with the hydrodynamic diameters increasing from 17 to 52 nm and the length of the copolymers increasing from 21,000 to 51,000 g·mol-1. These aqueous dispersed tpy-PPEGMA-b-PMMA nanospheres effectively complex metal ions, such as Cu2+, in a stoichiometric ratio of 2:1. Subsequently, these metal-complexed nanospheres were employed as soft template nanocarriers to control, on the nanometer scale, the dispersion of metal on a nanostructured support. This is exemplified by the synthesis of copper supported on cerium oxide hollow spheres (Cu-CeO2) using Cu2+-tpy-PPEGMA-b-PMMA as template nanocarriers and CeO2 nanoparticles. This novel assembly engineering strategy for the preparation of atomically dispersed metal on a nanostructured support was highlighted through the utilization of Cu-CeO2 hollow spheres as an electrocatalyst for the nitrate reduction reaction (NO3RR) to NH3. These encouraging outcomes emphasize the potential of metal-metal oxide-nanostructured materials to treat contaminated water sources with nitrate while allowing the green production of ammonia.

20.
Micromachines (Basel) ; 15(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39064352

RESUMO

The following study involved the utilization of dispersion polymerization to synthesize micron/nano-sized polystyrene (PS) spheres, which were then deposited onto a silicon substrate using the floating assembly method to form a long-range monolayer. Subsequently, dry etching techniques were utilized to create subwavelength structures. The adjustment of the stabilizer polyvinylpyrrolidone (PVP), together with changes in the monomer concentration, yielded PS spheres ranging from 500 nm to 5.6 µm in diameter. These PS spheres were suspended in a mixture of alcohol and deionized water before being arranged using the floating assembly method. The resulting tightly packed particle arrangement is attributed to van der Waals forces, Coulomb electrostatic forces between the PS spheres, and surface tension effects. The interplay of these forces was analyzed to comprehend the resulting structure. Dry etching, utilizing the PS spheres as masks, enabled the exploration of the effects of etching parameters on the resultant structures. Unlike traditional dry etching methods controlling RF power and etching gases, in the present study, we focused on adjusting the oxygen flow rate to achieve cylindrical, conical, and parabolic etched structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA