Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Arch Microbiol ; 206(9): 380, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143366

RESUMO

Haloalkane dehalogenase, LinB, is a member of the α/ß hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially ß-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on ß-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of ß-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.


Assuntos
Hexaclorocicloexano , Hidrolases , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Hexaclorocicloexano/metabolismo , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Cinética , Biodegradação Ambiental , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Sphingomonas/enzimologia , Sphingomonas/genética , Sphingomonas/metabolismo
2.
Chemosphere ; 362: 142744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950749

RESUMO

Plant-microbe remediation technique is considered as a promising technology in removal of organic pollutants and its remediation efficiency is largely affected by a variety of surrounding environmental factors. Humic acid (HA) is the complex organic substance ubiquitous in environment, which characterized by its surfactant-like micelle microstructure and various reaction activity. In our study, a plant-microbe association with high p-tert-Butylphenol (PTBP) degradation potential constructed by Spirodela polyrhiza and Sphingobium phenoxybenzoativorans Tas13 has been used, and the influence of HA on the PTBP degradation efficiency of S. polyrhiza-Tas13 association was investigated. The result showed that the presence of HA greatly improved PTBP removal efficiency of S. polyrhiza-Tas13. The reason accounted for this may be due to the presence of HA promoted bacterial cell propagation, altered bacterial cell wall permeability, increased catechol 2,3-dioxygenase (C23O) enzyme activity of strain Tas13, rather than increasing the colonization ability of strain Tas13 on to the root surface. This study will greatly facilitate the application of aquatic plant-microbe association in environmental remediation.


Assuntos
Biodegradação Ambiental , Substâncias Húmicas , Fenóis , Fenóis/metabolismo , Araceae/metabolismo , Sphingomonadaceae/metabolismo , Poluentes Químicos da Água/metabolismo
3.
J Hazard Mater ; 475: 134889, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878436

RESUMO

Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.


Assuntos
Biodegradação Ambiental , Cromatos , Dioxigenases , Oxirredutases , Hidrocarbonetos Policíclicos Aromáticos , Sphingomonadaceae , Sphingomonadaceae/enzimologia , Sphingomonadaceae/metabolismo , Dioxigenases/metabolismo , Dioxigenases/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Cromatos/metabolismo , Oxirredutases/metabolismo , Cromo/metabolismo , Fenantrenos/metabolismo
4.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727835

RESUMO

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Assuntos
Biodegradação Ambiental , Ácidos Ftálicos , Sphingomonadaceae , Ácidos Ftálicos/metabolismo , Sphingomonadaceae/metabolismo , Sphingomonadaceae/genética , Dibutilftalato/metabolismo , Plastificantes/metabolismo , Cromatografia Líquida de Alta Pressão , Hidroxibenzoatos/metabolismo
5.
Front Microbiol ; 15: 1361335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646623

RESUMO

As an efficient degradation strain, Sphingobium baderi SC-1 can breakdown 3-phenoxybenzoic acid (3-PBA) with high proficiency. To investigate the internal factors that regulate this process, we conducted whole-genome sequencing and successfully identified the pivotal 3-PBA-degrading gene sca (1,230 bp). After sca was expressed in engineered bacteria, a remarkable degradation efficiency was observed, as 20 mg/L 3-PBA was almost completely decomposed within 24 h. The phenol was formed as one of the degradation products. Notably, in addition to their ability to degrade 3-PBA, the resting cells proficiently degraded 4'-HO-3-PBA and 3'-HO-4-PBA. In conclusion, we successfully identified and validated sca as the pivotal enzyme responsible for the efficient degradation of 3-PBA from Sphingomonas baderi, providing a crucial theoretical foundation for further explorations on the degradation potential of SC-1.

6.
Emerg Infect Dis ; 30(5): 1060-1062, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666619

RESUMO

We report a case of Sphingobium yanoikuyae bacteremia in an 89-year-old patient in Japan. No standard antimicrobial regimen has been established for S. yanoikuyae infections. However, ceftriaxone and ceftazidime treatments were effective in this case. Increased antimicrobial susceptibility data are needed to establish appropriate treatments for S. yanoikuyae.


Assuntos
Antibacterianos , Bacteriemia , Sphingomonadaceae , Idoso de 80 Anos ou mais , Humanos , Masculino , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Japão , Testes de Sensibilidade Microbiana , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Sphingomonadaceae/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38629946

RESUMO

A novel Gram-stain-negative, yellow-pigmented, short rod-shaped bacterial strain, HBC34T, was isolated from a freshwater sample collected from Daechung Reservoir, Republic of Korea. The results of 16S rRNA gene sequence analysis indicated that HBC34T was affiliated with the genus Sphingobium and shared the highest sequence similarity to the type strains of Sphingobium vermicomposti (98.01 %), Sphingobium psychrophilum (97.87 %) and Sphingobium rhizovicinum (97.59 %). The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between HBC34T and species of the genus Sphingobium with validly published names were below 84.01 and 28.1 %, respectively. These values were lower than the accepted species-delineation thresholds, supporting its recognition as representing a novel species of the genus Sphingobium. The major fatty acids (>10 % of the total fatty acids) were identified as summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The main polar lipids were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, two phospholipids and two unidentified polar lipids. The respiratory quinone was Q-10. The genomic DNA G+C content of HBC34T was 64.04 %. The polyphasic evidence supports the classification of HBC34T as the type strain of a novel species of the genus Sphingobium, for which the name Sphingobium cyanobacteriorum sp. nov is proposed. The type strain is HBC34T (= KCTC 8002T= LMG 33140T).


Assuntos
Ácidos Graxos , Água Doce , Composição de Bases , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
8.
J Water Health ; 22(3): 536-549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557569

RESUMO

Bacterial communities in drinking water provide a gauge to measure quality and confer insights into public health. In contrast to urban systems, water treatment in rural areas is not adequately monitored and could become a health risk. We performed 16S rRNA amplicon sequencing to analyze the microbiome present in the water treatment plants at two rural communities, one city, and the downstream water for human consumption in schools and reservoirs in the Andean highlands of Ecuador. We tested the effect of water treatment on the diversity and composition of bacterial communities. A set of physicochemical variables in the sampled water was evaluated and correlated with the structure of the observed bacterial communities. Predominant bacteria in the analyzed communities belonged to Proteobacteria and Actinobacteria. The Sphingobium genus, a chlorine resistance group, was particularly abundant. Of health concern in drinking water reservoirs were Fusobacteriaceae, Lachnospiraceae, and Ruminococcaceae; these families are associated with human and poultry fecal contamination. We propose the latter families as relevant biomarkers for establishing local standards for the monitoring of potable water systems in highlands of Ecuador. Our assessment of bacterial community composition in water systems in the Ecuadorian highlands provides a technical background to inform management decisions.


Assuntos
Água Potável , Humanos , Equador , RNA Ribossômico 16S/genética , Bactérias , Proteobactérias/genética , Microbiologia da Água
9.
Environ Microbiome ; 19(1): 2, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178261

RESUMO

BACKGROUND: As part of the plant microbiome, endophytic bacteria play an essential role in plant growth and resistance to stress. Water-soluble humic materials (WSHM) is widely used in sustainable agriculture as a natural and non-polluting plant growth regulator to promote the growth of plants and beneficial bacteria. However, the mechanisms of WSHM to promote plant growth and the evidence for commensal endophytic bacteria interaction with their host remain largely unknown. Here, 16S rRNA gene sequencing, transcriptomic analysis, and culture-based methods were used to reveal the underlying mechanisms. RESULTS: WSHM reduced the alpha diversity of soybean endophytic bacteria, but increased the bacterial interactions and further selectively enriched the potentially beneficial bacteria. Meanwhile, WSHM regulated the expression of various genes related to the MAPK signaling pathway, plant-pathogen interaction, hormone signal transduction, and synthetic pathways in soybean root. Omics integration analysis showed that Sphingobium was the genus closest to the significantly changed genes in WSHM treatment. The inoculation of endophytic Sphingobium sp. TBBS4 isolated from soybean significantly improved soybean nodulation and growth by increasing della gene expression and reducing ethylene release. CONCLUSION: All the results revealed that WSHM promotes soybean nodulation and growth by selectively regulating soybean gene expression and regulating the endophytic bacterial community, Sphingobium was the key bacterium involved in plant-microbe interaction. These findings refined our understanding of the mechanism of WSHM promoting soybean nodulation and growth and provided novel evidence for plant-endophyte interaction.

10.
J Agric Food Chem ; 71(49): 19663-19671, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038961

RESUMO

Sphingobium lignivorans SYK-6 can assimilate various lignin-derived aromatic compounds, including a ß-5-type (phenylcoumaran-type) dimer, dehydrodiconiferyl alcohol (DCA). SYK-6 converts DCA to a stilbene-type intermediate via multiple reaction steps and then to vanillin and 5-formylferulic acid (FFA). Here, we first elucidated the catabolic pathway of FFA, which is the only unknown pathway in DCA catabolism. Then, we identified and characterized the enzyme-encoding genes responsible for this pathway. Analysis of the metabolites revealed that FFA was converted to 5-carboxyferulic acid (CFA) through oxidation of the formyl group, followed by conversion to ferulic acid by decarboxylation. A comprehensive analysis of the aldehyde dehydrogenase genes in SYK-6 indicated that NAD+-dependent FerD (SLG_12800) is crucial for the conversion of FFA to CFA. LigW and LigW2, which are 5-carboxyvanillic acid decarboxylases involved in the catabolism of a 5,5-type dimer, were found to be involved in the conversion of CFA to ferulic acid, and LigW2 played a significant role. The ligW2 gene forms an operon with ferD, and their transcription was induced during growth in DCA.


Assuntos
Sphingomonadaceae , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Lignina/metabolismo , Oxirredução , Ácidos Cumáricos/metabolismo
11.
Front Microbiol ; 14: 1289110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088973

RESUMO

There are many unidentified microbes in polluted soil needing to be explored and nominated to benefit the study of microbial ecology. In this study, a taxonomic research was carried out on five bacterial strains which were isolated and cultivated from polycyclic aromatic hydrocarbons, and heavy metals polluted soil of an abandoned coking plant. Phylogenetical analysis showed that they belonged to the phyla Proteobacteria and Actinobacteria, and their 16S rRNA gene sequence identities were lower than 98.5% to any known and validly nominated bacterial species, suggesting that they were potentially representing new species. Using polyphasic taxonomic approaches, the five strains were classified as new species of the families Microbacteriaceae and Sphingomonadaceae. Genome sizes of the five strains ranged from 3.07 to 6.60 Mb, with overall DNA G+C contents of 63.57-71.22 mol%. The five strains had average nucleotide identity of 72.38-87.38% and digital DNA-DNA hybridization of 14.0-34.2% comparing with their closely related type strains, which were all below the thresholds for species delineation, supporting these five strains as novel species. Based on the phylogenetic, phylogenomic, and phenotypic characterizations, the five novel species are proposed as Agromyces chromiiresistens (type strain H3Y2-19aT = CGMCC 1.61332T), Salinibacterium metalliresistens (type strain H3M29-4T = CGMCC 1.61335T), Novosphingobium album (type strain H3SJ31-1T = CGMCC 1.61329T), Sphingomonas pollutisoli (type strain H39-1-10T = CGMCC 1.61325T), and Sphingobium arseniciresistens (type strain H39-3-25T = CGMCC 1.61326T). Comparative genome analysis revealed that the species of the family Sphingomonadaceae represented by H39-1-10T, H39-3-25T, and H3SJ31-1T possessed more functional protein-coding genes for the degradation of aromatic pollutants than the species of the family Microbacteriaceae represented by H3Y2-19aT and H3M29-4T. Furthermore, their capacities of resisting heavy metals and metabolizing aromatic compounds were investigated. The results indicated that strains H3Y2-19aT and H39-3-25T were robustly resistant to chromate (VI) and/or arsenite (III). Strains H39-1-10T and H39-3-25T grew on aromatic compounds, including naphthalene, as carbon sources even in the presence of chromate (VI) and arsenite (III). These features reflected their adaptation to the polluted soil environment.

12.
Plant Direct ; 7(12): e550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116181

RESUMO

α-Tomatine is a major saponin that accumulates in tomatoes (Solanum lycopersicum). We previously reported that α-tomatine secreted from tomato roots modulates root-associated bacterial communities, particularly by enriching the abundance of Sphingobium belonging to the family Sphingomonadaceae. To further characterize the α-tomatine-mediated interactions between tomato plants and soil bacterial microbiota, we first cultivated tomato plants in pots containing different microbial inoculants originating from three field soils. Four bacterial genera, namely, Sphingobium, Bradyrhizobium, Cupriavidus, and Rhizobacter, were found to be commonly enriched in tomato root-associated bacterial communities. We constructed a pseudo-rhizosphere system using a mullite ceramic tube as an artificial root to investigate the influence of α-tomatine in modifying bacterial communities. The addition of α-tomatine from the artificial root resulted in the formation of a concentration gradient of α-tomatine that mimicked the tomato rhizosphere, and distinctive bacterial communities were observed in the soil close to the artificial root. Sphingobium was enriched according to the α-tomatine concentration gradient, whereas Bradyrhizobium, Cupriavidus, and Rhizobacter were not enriched in α-tomatine-treated soil. The tomato root-associated bacterial communities were similar to the soil bacterial communities in the vicinity of artificial root-secreting exudates; however, hierarchical cluster analysis revealed a distinction between root-associated and pseudo-rhizosphere bacterial communities. These results suggest that the pseudo-rhizosphere device at least partially creates a rhizosphere environment in which α-tomatine enhances the abundance of Sphingobium in the vicinity of the root. Enrichment of Sphingobium in the tomato rhizosphere was also apparent in publicly available microbiota data, further supporting the tight association between tomato roots and Sphingobium mediated by α-tomatine.

13.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787389

RESUMO

A Gram-stain-negative, aerobic, short rod-shaped and motile bacterial strain, designated MAH-33T, was isolated from rhizospheric soil of eggplant. The colonies were observed to be yellow-coloured, smooth, spherical and 0.1-0.3 mm in diameter when grown on TSA agar medium for 2 days. Strain MAH-33T was found to be able to grow at 10-40 °C, at pH 5.0-10.0 and at 0-3.0 % NaCl (w/v). The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of tyrosine and aesculin. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Sphingobium and to be closely related to Sphingobium quisquiliarum P25T (98.4 % similarity), Sphingobium mellinum WI4T (97.8 %), Sphingobium fuliginis TKPT (97.3 %) and Sphingobium herbicidovorans NBRC 16415T (96.9 %). The novel strain MAH-33T has a draft genome size of 3 908 768 bp (28 contigs), annotated with 3689 protein-coding genes, 45 tRNA and three rRNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-33T and closely related type strains were in the range of 79.8-81.6 % and 23.2-24.5 %, respectively. The genomic DNA G+C content was determined to be 62.2 %. The predominant isoprenoid quinone was ubiquinone 10. The major fatty acids were identified as C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipids identified in strain MAH-33T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine; one unknown phospholipid and one unknown lipid. On the basis of digital DNA-DNA hybridization, ANI value, genotypic analysis, chemotaxonomic and physiological data, strain MAH-33T represents a novel species within the genus Sphingobium, for which the name Sphingobium agri sp. nov. is proposed, with MAH-33T (=KACC 19973T = CGMCC 1.16609T) as the type strain.


Assuntos
Ácidos Graxos , Solanum melongena , Ácidos Graxos/química , Solanum melongena/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química , Microbiologia do Solo
14.
mBio ; 14(5): e0059923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772873

RESUMO

IMPORTANCE: Saponins are a group of plant specialized metabolites with various bioactive properties, both for human health and soil microorganisms. Our previous works demonstrated that Sphingobium is enriched in both soils treated with a steroid-type saponin, such as tomatine, and in the tomato rhizosphere. Despite the importance of saponins in plant-microbe interactions in the rhizosphere, the genes involved in the catabolism of saponins and their aglycones (sapogenins) remain largely unknown. Here we identified several enzymes that catalyzed the degradation of steroid-type saponins in a Sphingobium isolate from tomato roots, RC1. A comparative genomic analysis of Sphingobium revealed the limited distribution of genes for saponin degradation in our saponin-degrading isolates and several other isolates, suggesting the possible involvement of the saponin degradation pathway in the root colonization of Sphingobium spp. The genes that participate in the catabolism of sapogenins could be applied to the development of new industrially valuable sapogenin molecules.


Assuntos
Sapogeninas , Saponinas , Solanum lycopersicum , Humanos , Sapogeninas/metabolismo , Esteroides , Saponinas/metabolismo , Plantas/metabolismo
15.
Cell Rep ; 42(8): 112847, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515767

RESUMO

Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin.


Assuntos
Lignina , Engenharia Metabólica , Lignina/metabolismo , Metabolismo Secundário , Biblioteca Gênica
16.
Bioresour Technol ; 385: 129450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406831

RESUMO

Towards lignin upgrading, vanillic acid (VA), a lignin-derived guaiacyl compound, was produced from sulfite lignin for successfully synthesizing poly(ethylene vanillate), an aromatic polymer. The engineered Sphingobium sp. SYK-6-based strain in which the genes responsible for VA/3-O-methyl gallic acid O-demethylase and syringic acid O-demethylase were disrupted was able to produce vanillic acid (VA) from the mixture consisting of acetovanillone, vanillin, VA, and other low-molecular-weight aromatics obtained by Cu(OH)2-catalyzed alkaline depolymerization of sulfite lignin and membrane fractionation. From the bio-based VA, methyl-4-(2-hydroxyethoxy)-3-methoxybenzoate was synthesized via methylesterification, hydroxyethylation, and distillation, and then it was subjected to polymerization catalyzed by titanium tetraisopropoxide. The molecular weight of the obtained poly(ethylene vanillate) was evaluated to be Mw = 13,000 (Mw/Mn = 1.99) and its melting point was 261 °C. The present work proved that poly(ethylene vanillate) is able to be synthesized using VA produced from lignin for the first time.


Assuntos
Lignina , Ácido Vanílico , Polietileno , Oxirredutases O-Desmetilantes/genética , Etilenos
17.
Front Microbiol ; 14: 1219721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283929

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2022.929147.].

18.
J Hazard Mater ; 457: 131740, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269567

RESUMO

Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes. The results of our batch experiments revealed that the transformation of NPEO into NP and subsequent NP degradation were the rate-limiting processes for controlling the risk of estrogenicity, resulting in an inverted V-shaped curve of estrogenicity in water samples during the biodegradation of NPEO by textile activated sludge. By utilizing enrichment sludge microbiomes treated with NPEO or NP as the sole carbon and energy source, a total of 15 bacterial degraders, including Sphingbium, Pseudomonas, Dokdonella, Comamonas, and Hyphomicrobium, were identified as capable of participating in these processes, Among them, Sphingobium and Pseudomonas were the two key degraders that could cooperatively interact in the degradation of NPEO with division of labor mechanisms. Co-culturing Sphingobium and Pseudomonas isolates exhibited a synergistic effect in degrading NPEO and reducing estrogenicity. Our study underscores the potential of the identified functional bacteria for controlling estrogenicity associated with NPEO and provides a methodological framework for identifying key cooperators engaged in labor division, contributing to the management of risks associated with DTPs by leveraging intrinsic microbial metabolic interactions.


Assuntos
Biodegradação Ambiental , Poluentes Químicos da Água , Estrona , Etilenoglicóis , Esgotos/microbiologia , Sphingomonadaceae/metabolismo , Poluentes Químicos da Água/análise
19.
Appl Environ Microbiol ; 89(6): e0017123, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184397

RESUMO

Sphingobium sp. strain SYK-6 is an efficient aromatic catabolic bacterium that can consume all four stereoisomers of 1,2-diguaiacylpropane-1,3-diol (DGPD), which is a ring-opened ß-1-type dimer. Recently, LdpA-mediated catabolism of erythro-DGPD was reported in SYK-6, but the catabolic pathway for threo-DGPD was as yet unknown. Here, we elucidated the catabolism of threo-DGPD, which proceeds through conversion to erythro-DGPD. When threo-DGPD was incubated with SYK-6, the Cα hydroxy groups of threo-DGPD (DGPD I and II) were initially oxidized to produce the Cα carbonyl form (DGPD-keto I and II). This initial oxidation step is catalyzed by Cα-dehydrogenases, which belong to the short-chain dehydrogenase/reductase (SDR) family and are involved in the catabolism of ß-O-4-type dimers. Analysis of seven candidate genes revealed that NAD+-dependent LigD and LigL are mainly involved in the conversion of DGPD I and II, respectively. Next, we found that DGPD-keto I and II were reduced to erythro-DGPD (DGPD III and IV) in the presence of NADPH. Genes involved in this reduction were sought from Cα-dehydrogenase and ldpA-neighboring SDR genes. The gene products of SLG_12690 (ldpC) and SLG_12640 (ldpB) catalyzed the NADPH-dependent conversion of DGPD-keto I to DGPD III and DGPD-keto II to DGPD IV, respectively. Mutational analysis further indicated that ldpC and ldpB are predominantly involved in the reduction of DGPD-keto. Together, these results demonstrate that SYK-6 harbors a comprehensive catabolic enzyme system to utilize all four ß-1-type stereoisomers through successive oxidation and reduction reactions of the Cα hydroxy group of threo-DGPD with a net stereoinversion using multiple dehydrogenases. IMPORTANCE In many catalytic depolymerization processes of lignin polymers, aryl-ether bonds are selectively cleaved, leaving carbon-carbon bonds between aromatic units intact, including dimers and oligomers with ß-1 linkages. Therefore, elucidating the catabolic system of ß-1-type lignin-derived compounds will aid in the establishment of biological funneling of heterologous lignin-derived aromatic compounds to value-added products. Here, we found that threo-DGPD was converted by successive stereoselective oxidation and reduction at the Cα position by multiple alcohol dehydrogenases to erythro-DGPD, which is further catabolized. This system is very similar to that developed to obtain enantiopure alcohols from racemic alcohols by artificially combining two enantiocomplementary alcohol dehydrogenases. The results presented here demonstrate that SYK-6 has evolved to catabolize all four stereoisomers of DGPD by incorporating this stereoinversion system into its native ß-1-type dimer catabolic system.


Assuntos
Álcool Desidrogenase , Lignina , Lignina/metabolismo , NADP/metabolismo , Álcool Desidrogenase/metabolismo , Oxirredução , Álcoois
20.
Artigo em Inglês | MEDLINE | ID: mdl-37022748

RESUMO

Bacterial strain H33T was isolated from tobacco plant soil and was characterized using a polyphasic taxonomy approach. Strain H33T was a Gram-stain-negative, rod-shaped, non-motile and strictly aerobic bacterium. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of the up-to-date bacterial core gene set (92 protein clusters) indicated that H33T belongs to the genus Sphingobium. Strain H33T showed the highest 16S rRNA gene sequence similarity to Sphingobium xanthum NL9T (97.2%) and showed 72.3-80.6 % average nucleotide identity and 19.7-29.2 % digital DNA-DNA hybridization identity with the strains of other species of the genus Sphingobium. Strain H33T grew optimally at 30°C, pH 7 and could tolerate 0.5 % (w/v) NaCl. The isoprenoid quinones were ubiquinone-9 (64.1%) and ubiquinone-10 (35.9%). Spermidine was the major polyamine. The major fatty acids of H33T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile consisted of a mixture of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, sphingoglycolipid, two unidentified lipids, two unidentified glycolipids, two unidentified aminoglycolipids and an unidentified phospholipid. The genomic DNA G+C content of H33T was 64.9 mol%. Based on the phylogenetic and phenotypic data, H33T was considered a representative of a novel species in the genus Sphingobium. We propose the name Sphingobium nicotianae sp. nov., with H33T (=CCTCC AB 2022073T=LMG 32569T) as the type strain.


Assuntos
Ácidos Graxos , Nicotiana , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA