Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Exp Neurol ; 381: 114925, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151596

RESUMO

OBJECTIVES: Absence seizures impair psychosocial function, yet their detailed neuronal basis remains unknown. Recent work in a rat model suggests that cortical arousal state changes prior to seizures and that single neurons show diverse firing patterns during seizures. Our aim was to extend these investigations to a mouse model with studies of neuronal activity and arousal state to facilitate future fundamental investigations of absence epilepsy. METHODS: We performed in vivo extracellular single unit recordings on awake head-fixed C3H/HeJ mice. Mice were implanted with tripolar electrodes for cortical electroencephalography (EEG). Extracellular single unit recordings were obtained with glass micropipettes in the somatosensory barrel cortex, while animals ambulated freely on a running wheel. Signals were digitized and analyzed during seizures and at baseline. RESULTS: Neuronal activity was recorded from 36 cortical neurons in 19 mice while EEG showed characteristic 7-8 Hz spike-wave discharges. Different single neurons showed distinct firing patterns during seizures, but the overall mean population neuronal firing rate during seizures was no different from pre-seizure baseline. However, the rhythmicity of neuronal firing during seizures was significantly increased (p < 0.001). In addition, beginning 10s prior to seizure initiation, we observed a progressive decrease in cortical high frequency (>40 Hz) EEG and an increase in lower frequency (1-39 Hz) activity suggesting decreased arousal state. SIGNIFICANCE: We found that the awake head-fixed C3H/HeJ mouse model demonstrated rhythmic neuronal firing during seizures, and a decreased cortical arousal state prior to seizure onset. Unlike the rat model we did not observe an overall decrease in neuronal firing during seizures. Similarities and differences across species strengthen the ability to investigate fundamental key mechanisms. Future work in the mouse model will identify the molecular basis of neurons with different firing patterns, their role in seizure initiation and behavioral deficits, with ultimate translation to human absence epilepsy.

2.
Epilepsy Res ; 202: 107359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582072

RESUMO

PURPOSE: In developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS), the thalamocortical network is suggested to play an important role in the pathophysiology of the progression from focal epilepsy to DEE-SWAS. Ethosuximide (ESM) exerts effects by blocking T-type calcium channels in thalamic neurons. With the thalamocortical network in mind, we studied the prediction of ESM effectiveness in DEE-SWAS treatment using phase-amplitude coupling (PAC) analysis. METHODS: We retrospectively enrolled children with DEE-SWAS who had an electroencephalogram (EEG) recorded between January 2009 and September 2022 and were prescribed ESM at Okayama University Hospital. Only patients whose EEG showed continuous spike-and-wave during sleep were included. We extracted 5-min non-rapid eye movement sleep stage N2 segments from EEG recorded before starting ESM. We calculated the modulation index (MI) as the measure of PAC in pair combination comprising one of two fast oscillation types (gamma, 40-80 Hz; ripples, 80-150 Hz) and one of five slow-wave bands (delta, 0.5-1, 1-2, 2-3, and 3-4 Hz; theta, 4-8 Hz), and compared it between ESM responders and non-responders. RESULTS: We identified 20 children with a diagnosis of DEE-SWAS who took ESM. Fifteen were ESM responders. Regarding gamma oscillations, significant differences were seen only in MI with 0.5-1 Hz slow waves in the frontal pole and occipital regions. Regarding ripples, ESM responders had significantly higher MI in coupling with all slow waves in the frontal pole region, 0.5-1, 3-4, and 4-8 Hz slow waves in the frontal region, 3-4 Hz slow waves in the parietal region, 0.5-1, 2-3, 3-4, and 4-8 Hz slow waves in the occipital region, and 3-4 Hz slow waves in the anterior-temporal region. SIGNIFICANCE: High MI in a wider area of the brain may represent the epileptic network mediated by the thalamus in DEE-SWAS and may be a predictor of ESM effectiveness.


Assuntos
Anticonvulsivantes , Eletroencefalografia , Etossuximida , Sono , Humanos , Etossuximida/uso terapêutico , Etossuximida/farmacologia , Masculino , Feminino , Eletroencefalografia/métodos , Estudos Retrospectivos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Pré-Escolar , Criança , Sono/efeitos dos fármacos , Sono/fisiologia , Lactente , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/fisiopatologia
3.
Genes Brain Behav ; 23(2): e12879, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38444174

RESUMO

Absence seizures are characterized by brief lapses in awareness accompanied by a hallmark spike-and-wave discharge (SWD) electroencephalographic pattern and are common to genetic generalized epilepsies (GGEs). While numerous genes have been associated with increased risk, including some Mendelian forms with a single causal allele, most cases of GGE are idiopathic and there are many unknown genetic modifiers of GGE influencing risk and severity. In a previous meta-mapping study, crosses between transgenic C57BL/6 and C3HeB/FeJ strains, each carrying one of three SWD-causing mutations (Gabrg2tm1Spet(R43Q) , Scn8a8j or Gria4spkw1 ), demonstrated an antagonistic epistatic interaction between loci on mouse chromosomes 2 and 7 influencing SWD. These results implicate universal modifiers in the B6 background that mitigate SWD severity through a common pathway, independent of the causal mutation. In this study, we prioritized candidate modifiers in these interacting loci. Our approach integrated human genome-wide association results with gene interaction networks and mouse brain gene expression to prioritize candidate genes and pathways driving variation in SWD outcomes. We considered candidate genes that are functionally associated with human GGE risk genes and genes with evidence for coding or non-coding allele effects between the B6 and C3H backgrounds. Our analyses output a summary ranking of gene pairs, one gene from each locus, as candidates for explaining the epistatic interaction. Our top-ranking gene pairs implicate microtubule function, cytoskeletal stability and cell cycle regulation as novel hypotheses about the source of SWD variation across strain backgrounds, which could clarify underlying mechanisms driving differences in GGE severity in humans.


Assuntos
Estudo de Associação Genômica Ampla , Alta do Paciente , Humanos , Animais , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Alelos , Canal de Sódio Disparado por Voltagem NAV1.6
4.
CNS Neurosci Ther ; 30(3): e14443, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37658671

RESUMO

AIM: The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are an inbred polygenic model of childhood absence epilepsy (CAE), which, as their non-epileptic control (NEC) rats, are derived from Wistar rats. While the validity of GAERS in reproducing absence seizures is well established, its use as a model for CAE psychiatric comorbidities has been subject to conflicting findings. Differences in colonies, experimental procedures, and the use of diverse controls from different breeders may account for these disparities. Therefore, in this study, we compared GAERS, NEC, and Wistar bred in the same animal facility with commercially available Wistar (Cm Wistar) as a third control. METHODS: We performed hole board (HB) and elevated plus maze (EPM) tests that were analyzed with standard quantitative and T-pattern analysis in male, age-matched Cm Wistar and GAERS, NEC, and Wistar, bred under the same conditions, to rule out the influence of different housing factors and provide extra information on the structure of anxiety-like behavior of GAERS rats. RESULTS: Quantitative analysis showed that GAERS and NEC had similar low anxiety-like behavior when compared to Cm Wistar but not to Wistar rats, although a higher hole-focused exploration was revealed in NEC. T-pattern analysis showed that GAERS, NEC, and Wistar had a similar anxiety status, whereas GAERS and NEC exhibited major differences with Cm Wistar but not Wistar rats. EPM results indicated that GAERS and NEC also have similar low anxiety compared to Cm Wistar and/or Wistar rats. Nevertheless, the analysis of the T-pattern containing open-arm entry showed GAERS and Wistar to be less anxious than NEC and Cm Wistar rats. CONCLUSION: To summarize, comorbid anxiety may not be present in male GAERS rats. This study also highlighted the importance of including a control Wistar group bred under the same conditions when evaluating their behavior, as using Wistar rats from commercial breeders can lead to misleading results.


Assuntos
Epilepsia Tipo Ausência , Humanos , Ratos , Masculino , Animais , Epilepsia Tipo Ausência/genética , Ratos Wistar , Teste de Labirinto em Cruz Elevado , Grupos Controle , Eletroencefalografia , Ansiedade , Modelos Animais de Doenças
5.
Mol Genet Genomic Med ; 12(1): e2311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087948

RESUMO

BACKGROUND: Biallelic pathogenic variants in the mitochondrial prolyl-tRNA synthetase 2 gene (PARS2, OMIM * 612036) have been associated with Developmental and Epileptic Encephalopathy-75 (DEE-75, MIM #618437). This condition is typically characterized by early-onset refractory infantile spasms with hypsarrhythmia, intellectual disability, microcephaly, cerebral atrophy with hypomyelination, lactic acidemia, and cardiomyopathy. Most affected individuals do not survive beyond the age of 10 years. METHODS: We describe a patient with early-onset DEE, consistently showing an EEG pattern of Spike-and-Wave Activation in Sleep (SWAS) since childhood. The patient underwent extensive clinical, metabolic and genetic investigations, including whole exome sequencing (WES). RESULTS: WES analysis identified compound heterozygous variants in PARS2 that have been already reported as pathogenic. A literature review of PARS2-associated DEE, focusing mainly on the electroclinical phenotype, did not reveal the association of SWAS with pathogenic variants in PARS2. Notably, unlike previously reported cases with the same genotype, this patient had longer survival without cardiac involvement or lactic acidosis, suggesting potential genetic modifiers contributing to disease variability. CONCLUSION: These findings widen the genetic heterogeneity of DEE-SWAS, including PARS2 as a causative gene in this syndromic entity, and highlight the importance of prolonged sleep EEG recording for the recognition of SWAS as a possible electroclinical evolution of PARS2-related DEE.


Assuntos
Microcefalia , Espasmos Infantis , Humanos , Criança , Espasmos Infantis/genética , Sono/fisiologia , Eletroencefalografia , Fenótipo
6.
Front Neurol ; 14: 1231736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146441

RESUMO

Introduction: The genetic absence epilepsy rat from Strasbourg (GAERS) is a rat model for infantile absence epilepsy with spike-and-wave discharges (SWDs). This study aimed to investigate the potential of alpha 2A agonism to induce seizures during the pre-epileptic period in GAERS rats. Methods: Stereotaxic surgery was performed on male pups and adult GAERS rats to implant recording electrodes in the frontoparietal cortices (right/left) under anesthesia (PN23-26). Following the recovery period, pup GAERS rats were subjected to electroencephalography (EEG) recordings for 2 h. Before the injections, pup epileptiform activity was examined using baseline EEG data. Dexmedetomidine was acutely administered at 0.6 mg/kg to pup GAERS rats 2-3 days after the surgery and once during the post-natal (PN) days 25-29. Epileptiform activities before injections triggered unilateral SWDs and induced sleep durations, and power spectral density was evaluated based on EEG traces. Results: The most prominent finding of this study is that unilateral SWD-like activities were induced in 47% of the animals with the intraperitoneal dexmedetomidine injection. The baseline EEGs of pup GAERS rats had no SWDs as expected since they are in the pre-epileptic period but showed low-amplitude non-rhythmic epileptiform activity. There was no difference in the duration of epileptiform activities between the basal EEG groups and DEX-injected unilateral SWD-like-exhibiting and non-SWD-like activities groups; however, the sleep duration of the unilateral SWD-like-exhibiting group was shorter. Power spectrum density (PSD) results revealed that the 1.75-Hz power in the left hemisphere peaks significantly higher than in the right. Discussion: As anticipated, pup GAERS rats in the pre-epileptic stage showed no SWDs. Nevertheless, they exhibited sporadic epileptiform activities. Specifically, dexmedetomidine induced SWD-like activities solely within the left hemisphere. These observations imply that absence seizures might originate unilaterally in the left cortex due to α2AAR agonism. Additional research is necessary to explore the precise cortical focal point of this activity.

7.
Front Neurol ; 14: 1282494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107640

RESUMO

Introduction: Orexin is a neuropeptide neurotransmitter that regulates the sleep/wake cycle produced by the lateral hypothalamus neurons. Recent studies have shown the involvement of orexin system in epilepsy. Limited data is available about the possible role of orexins in the pathophysiology of absence seizures. This study aims to understand the role of orexinergic signaling through the orexin-type 2 receptor (OX2R) in the pathophysiology of absence epilepsy. The pharmacological effect of a selective OX2R agonist, YNT-185 on spike-and-wave-discharges (SWDs) and the OX2R receptor protein levels in the cortex and thalamus in adult GAERS were investigated. Methods: The effect of intracerebroventricular (ICV) (100, 300, and 600 nmol/10 µL), intrathalamic (30 and 40 nmol/500 nL), and intracortical (40 nmol/500 nL) microinjections of YNT-185 on the duration and number of spontaneous SWDs were evaluated in adult GAERS. The percentage of slow-wave sleep (SWS) and spectral characteristics of background EEG were analyzed after the ICV application of 600 nmol YNT-185. The level of OX2R expression in the somatosensory cortex and projecting thalamic nuclei of adult GAERS were examined by Western blot and compared with the non-epileptic Wistar rats. Results: We showed that ICV administration of YNT-185 suppressed the cumulative duration of SWDs in GAERS compared to the saline-administered control group (p < 0.05). However, intrathalamic and intracortical microinjections of YNT-185 did not show a significant effect on SWDs. ICV microinjections of YNT-185 affect sleep states by increasing the percentage of SWS and showed a significant treatment effect on the 1-4 Hz delta frequency band power during the 1-2 h post-injection period where YNT-185 significantly decreased the SWDs. OXR2 protein levels were significantly reduced in the cortex and thalamus of GAERS when compared to Wistar rats. Conclusion: This study investigated the efficacy of YNT-185 for the first time on absence epilepsy in GAERS and revealed a suppressive effect of OX2R agonist on SWDs as evidenced by the significantly reduced expression of OX2R in the cortex and thalamus. YNT-185 effect on SWDs could be attributed to its regulation of wake/sleep states. The results constitute a step toward understanding the effectiveness of orexin neuropeptides on absence seizures in GAERS and might be targeted by therapeutic intervention for absence epilepsy.

8.
Front Hum Neurosci ; 17: 1274834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915754

RESUMO

A typical absence seizure is a generalized epileptic event characterized by a sudden, brief alteration of consciousness that serves as a hallmark for various generalized epilepsy syndromes. Distinguishing between similar interictal and ictal electroencephalographic (EEG) epileptiform patterns poses a challenge. However, quantitative EEG, particularly spectral analysis focused on EEG rhythms, shows potential for differentiation. This study was designed to investigate discernible differences in EEG spectral dynamics and entropy patterns during the pre-ictal and post-ictal periods compared to the interictal state. We analyzed 20 EEG ictal patterns from 11 patients with confirmed typical absence seizures, and assessed recordings made during the pre-ictal, post-ictal, and interictal intervals. Power spectral density (PSD) was used for the quantitative analysis that focused on the delta, theta, alpha, and beta bands. In addition, we measured EEG signal regularity using approximate (ApEn) and multi-scale sample entropy (MSE). Findings demonstrate a significant increase in delta and theta power in the pre-ictal and post-ictal intervals compared to the interictal interval, especially in the posterior brain region. We also observed a notable decrease in entropy in the pre-ictal and post-ictal intervals, with a more pronounced effect in anterior brain regions. These results provide valuable information that can potentially aid in differentiating epileptiform patterns in typical absence seizures. The implications of our findings are promising for precision medicine approaches to epilepsy diagnoses and patient management. In conclusion, our quantitative analysis of EEG data suggests that PSD and entropy measures hold promise as potential biomarkers for distinguishing ictal from interictal epileptiform patterns in patients with confirmed or suspected typical absence seizures.

9.
Cureus ; 15(10): e47401, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869047

RESUMO

Absence status epilepticus (ASE) is the most common type of status epilepticus in patients with idiopathic generalized epilepsy (IGE). Like absence seizure, ASE is characterized by generalized spike-and-wave discharges (GSWDs) on the electroencephalogram (EEG). Once considered specific for IGE, GSWDs have increasingly been observed in other forms of epilepsy, as well as in patients with no prior epilepsy. Here, we report three patients with different types of nonconvulsive status epilepticus (NCSE) in which the EEG correlate was GSWDs: a 44-year-old woman with juvenile absence epilepsy who manifested ASE, a 73-year-old woman with anoxic brain injury complicated by NCSE with well-formed GSWDs (as seen in IGE and de novo ASE), and a 41-year-old woman with frontal lobe epilepsy who developed focal NCSE with impaired consciousness. Evidently, patients with generalized epilepsy, focal epilepsy, and no prior epilepsy can all manifest NCSE with similar electroclinical characteristics, i.e., GSWDs and impaired consciousness. This observation adds to the existing evidence that seizures, whether classified as focal or generalized, often involve focal and generalized elements in their pathophysiology. To fully understand seizure pathophysiology, we must steer away from the focal-versus-generalized paradigm that has dominated the nosology of seizures and epilepsy for a very long time.

10.
Dystonia ; 22023.
Artigo em Inglês | MEDLINE | ID: mdl-37800168

RESUMO

Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.

11.
Epilepsy Behav ; 148: 109440, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748416

RESUMO

PURPOSE: Childhood absence epilepsy (CAE) is characterized by impaired consciousness and distinct electroencephalogram (EEG) patterns. However, interictal epileptiform discharges (IEDs) do not lead to noticeable symptoms. This study examines the disparity between ictal and interictal generalized spike-and-wave discharges (GSWDs) to determine the mechanisms behind CAE and consciousness. METHODS: We enrolled 24 patients with ictal and interictal GSWDs in the study. The magnetoencephalography (MEG) data were recorded before and during GSWDs at a sampling rate of 6000 Hz and analyzed across six frequency bands. The absolute and relative spectral power were estimated with the Minimum Norm Estimate (MNE) combined with the Welch technique. All the statistical analyses were performed using paired-sample tests. RESULTS: During GSWDs, the right lateral occipital cortex indicated a significant difference in the theta band (5-7 Hz) with stronger power (P = 0.027). The interictal group possessed stronger spectral power in the delta band (P < 0.01) and weaker power in the alpha band (P < 0.01) as early as 10 s before GSWDs in absolute and relative spectral power. Additionally, the ictal group revealed enhanced spectral power inside the occipital cortex in the alpha band and stronger spectral power in the right frontal regions within beta (15-29 Hz), gamma 1 (30-59 Hz), and gamma 2 (60-90 Hz) bands. CONCLUSIONS: GSWDs seem to change gradually, with local neural activity changing even 10 s before discharge. During GSWDs, visual afferent stimulus insensitivity could be related to the impaired response state in CAE. The inhibitory signal in the low-frequency band can shorten GSWD duration, thereby achieving seizure control through inhibitory effect strengthening.


Assuntos
Epilepsia Tipo Ausência , Humanos , Epilepsia Tipo Ausência/diagnóstico , Magnetoencefalografia , Encéfalo , Eletroencefalografia/métodos , Convulsões
12.
Seizure ; 111: 109-121, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598560

RESUMO

OBJECTIVE: Two types of spike-and-wave discharges (SWDs) exist in childhood absence epilepsy (CAE): clinical discharges are prolonged and manifest primarily as impaired consciousness, whereas subclinical discharges are brief with few objectively visible symptoms. This study aimed to compare neural functional network and default mode network (DMN) activity between clinical and subclinical discharges to better understand the underlying mechanism of CAE. METHODS: Using magnetoencephalography (MEG) data from 21 patients, we obtained 25 segments each of clinical discharges and subclinical discharges. Amplitude envelope correlation analysis was used to construct functional networks and graph theory was used to calculate network topological data. We then compared differences in functional connectivity within the DMN between clinical and subclinical discharges. All statistical comparisons were performed using paired-sample tests. RESULTS: Compared to subclinical discharges, the functional network of clinical discharges exhibited higher synchronization - particularly in the parahippocampal gyrus - as early as 10 s before the seizure. Additionally, the functional network of clinical SWDs presented an anterior shift of key nodes in the alpha frequency band. Regarding clinical discharge progression, there were gradual increases in the parameter node strengths (S), clustering coefficients (C), and global efficiency (E) of the functional networks, while the path lengths (L) decreased. These changes were most prominent at the onset of discharges and followed by some recovery in the high-frequency bands, but no significant change in the low-frequency bands. Furthermore, connections within the DMN during the discharge period were significantly stronger for clinical discharge compared to subclinical discharges. CONCLUSIONS: These findings suggest that a more regular network before abnormal discharges in clinical discharges contributes to SWD explosion and that the parahippocampal gyrus plays an important role in maintaining oscillations. An absence seizure is a gradual process and the emergence of SWDs may be accompanied by initiation of inhibitory mechanisms. Enhanced functional connectivity among DMN brain regions may indicate that patients have entered a state of introspection, and functional abnormalities in the parahippocampal gyrus may be associated with patients' transient memory loss.


Assuntos
Epilepsia Tipo Ausência , Magnetoencefalografia , Humanos , Alta do Paciente , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Convulsões
13.
Epilepsia ; 64(11): 2947-2957, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37545406

RESUMO

OBJECTIVE: To evaluate the safety, tolerability, pharmacokinetics, and preliminary efficacy of lacosamide (LCM) (up to 12 mg/kg/day or 600 mg/day) as adjunctive therapy in pediatric patients with epilepsy syndromes associated with generalized seizures. METHODS: Phase 2, multicenter, open-label exploratory trial (SP0966; NCT01969851; 2012-001446-18) of oral LCM for epilepsy syndromes associated with generalized seizures in pediatric patients ≥1 month to <18 years of age taking one to three concomitant antiseizure medications. The trial comprised a 6-week prospective baseline period, 6-week flexible titration period, and 12-week maintenance period. RESULTS: Fifty-five patients (mean age: 9.2 years; 56.4% male) took at least one dose of LCM and had at least one post-baseline efficacy-related assessment. The median treatment duration was 127.0 days. There were no clinically significant mean or median changes or worsening from baseline to end of the titration period in the count of generalized spike-wave discharges per interpretable hour on 24-h ambulatory electroencephalogram recordings, or from baseline to the maintenance period in mean and median days with any generalized or focal to bilateral tonic-clonic seizures per 28 days. Treatment-emergent adverse events (TEAEs) were reported by 49 patients (89.1%), and three patients (5.5%) discontinued due to TEAEs. The median change and median percentage change in days with any generalized or focal to bilateral tonic-clonic seizures per 28 days from baseline to the maintenance period were both 0. Trends toward improvement (decrease) were observed in median change and median percentage change in days with each individual seizure type (absence, myoclonic, clonic, tonic, tonic-clonic, atonic, and focal to bilateral tonic-clonic) per 28 days. SIGNIFICANCE: Safety findings were consistent with the known safety profile of LCM and were as expected for the pediatric population. There was no worsening of generalized seizures with LCM. Limitations include the inability to correlate spike and wave data with clinical outcomes, and the lack of similar studies against which the results can be compared.


Assuntos
Epilepsia Generalizada , Síndromes Epilépticas , Criança , Feminino , Humanos , Masculino , Anticonvulsivantes/efeitos adversos , Método Duplo-Cego , Quimioterapia Combinada , Epilepsia Generalizada/tratamento farmacológico , Síndromes Epilépticas/tratamento farmacológico , Lacosamida/efeitos adversos , Estudos Prospectivos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Resultado do Tratamento
14.
Epilepsia ; 64(10): e214-e221, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37501613

RESUMO

The solute carrier family 6 member 1 (SLC6A1) gene encodes GAT-1, a γ-aminobutyric acid transporter expressed on astrocytes and inhibitory neurons. Mutations in SLC6A1 are associated with epilepsy and developmental disorders, including motor and social impairments, but variant-specific animal models are needed to elucidate mechanisms. Here, we report electrocorticographic (ECoG) recordings and clinical data from a patient with a variant in SLC6A1 that encodes GAT-1 with a serine-to-leucine substitution at amino acid 295 (S295L), who was diagnosed with childhood absence epilepsy. Next, we show that mice bearing the S295L mutation (GAT-1S295L/+ ) have spike-and-wave discharges with motor arrest consistent with absence-type seizures, similar to GAT-1+/- mice. GAT-1S295L/+ and GAT-1+/- mice follow the same pattern of pharmacosensitivity, being bidirectionally modulated by ethosuximide (200 mg/kg ip) and the GAT-1 antagonist NO-711 (10 mg/kg ip). By contrast, GAT-1-/- mice were insensitive to both ethosuximide and NO-711 at the doses tested. In conclusion, ECoG findings in GAT-1S295L/+ mice phenocopy GAT-1 haploinsufficiency and provide a useful preclinical model for drug screening and gene therapy investigations.


Assuntos
Epilepsia Tipo Ausência , Etossuximida , Humanos , Camundongos , Animais , Criança , Etossuximida/uso terapêutico , Haploinsuficiência/genética , Ácidos Nipecóticos/uso terapêutico , Epilepsia Tipo Ausência/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo
15.
Brain ; 146(10): 4320-4335, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37192344

RESUMO

While anti-seizure medications are effective for many patients, nearly one-third of individuals have seizures that are refractory to pharmacotherapy. Prior studies using evoked preclinical seizure models have shown that pharmacological activation or excitatory optogenetic stimulation of the deep and intermediate layers of the superior colliculus (DLSC) display multi-potent anti-seizure effects. Here we monitored and modulated DLSC activity to suppress spontaneous seizures in the WAG/Rij genetic model of absence epilepsy. Female and male WAG/Rij adult rats were employed as study subjects. For electrophysiology studies, we recorded single unit activity from microwire arrays placed within the DLSC. For optogenetic experiments, animals were injected with virus coding for channelrhodopsin-2 or a control vector, and we compared the efficacy of continuous neuromodulation to that of closed-loop neuromodulation paradigms. For each, we compared three stimulation frequencies on a within-subject basis (5, 20, 100 Hz). For closed-loop stimulation, we detected seizures in real time based on the EEG power within the characteristic frequency band of spike-and-wave discharges (SWDs). We quantified the number and duration of each SWD during each 2 h-observation period. Following completion of the experiment, virus expression and fibre-optic placement was confirmed. We found that single-unit activity within the DLSC decreased seconds prior to SWD onset and increased during and after seizures. Nearly 40% of neurons displayed suppression of firing in response to the start of SWDs. Continuous optogenetic stimulation of the DLSC (at each of the three frequencies) resulted in a significant reduction of SWDs in males and was without effect in females. In contrast, closed-loop neuromodulation was effective in both females and males at all three frequencies. These data demonstrate that activity within the DLSC is suppressed prior to SWD onset, increases at SWD onset, and that excitatory optogenetic stimulation of the DLSC exerts anti-seizure effects against absence seizures. The striking difference between open- and closed-loop neuromodulation approaches underscores the importance of the stimulation paradigm in determining therapeutic effects.


Assuntos
Epilepsia Tipo Ausência , Ratos , Masculino , Humanos , Animais , Feminino , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/terapia , Colículos Superiores , Optogenética/métodos , Convulsões/terapia , Eletroencefalografia , Modelos Animais de Doenças
16.
Neurophotonics ; 10(2): 025005, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37114185

RESUMO

Significance Aims: The neurovascular mechanisms underlying the initiation of absence seizures and their dynamics are still not well understood. The objective of this study was to better noninvasively characterize the dynamics of the neuronal and vascular network at the transition from the interictal state to the ictal state of absence seizures and back to the interictal state using a combined electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and diffuse correlation spectroscopy (DCS) approach. The second objective was to develop hypotheses about the neuronal and vascular mechanisms that propel the networks to the 3-Hz spikes and wave discharges (SWDs) observed during absence seizures. Approaches: We evaluated the simultaneous changes in electrical (neuronal) and optical dynamics [hemodynamic, with changes in (Hb) and cerebral blood flow] of 8 pediatric patients experiencing 25 typical childhood absence seizures during the transition from the interictal state to the absence seizure by simultaneously performing EEG, fNIRS, and DCS. Results: Starting from ∼ 20 s before the onset of the SWD, we observed a transient direct current potential shift that correlated with alterations in functional fNIRS and DCS measurements of the cerebral hemodynamics detecting the preictal changes. Discussion: Our noninvasive multimodal approach highlights the dynamic interactions between the neuronal and vascular compartments that take place in the neuronal network near the time of the onset of absence seizures in a very specific cerebral hemodynamic environment. These noninvasive approaches contribute to a better understanding of the electrical hemodynamic environment prior to seizure onset. Whether this may ultimately be relevant for diagnostic and therapeutic approaches requires further evaluation.

17.
Neurobiol Dis ; 181: 106107, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001612

RESUMO

Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.


Assuntos
Epilepsia Tipo Ausência , Animais , Criança , Humanos , Camundongos , Ratos , Epilepsia Tipo Ausência/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo
18.
Neurobiol Dis ; 181: 106094, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990364

RESUMO

Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Epilepsia Generalizada/terapia , Humanos , Convulsões , Tálamo
19.
BMC Neurosci ; 23(1): 78, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536272

RESUMO

BACKGROUND: Electromagnetic induction has recently been considered as an important factor affecting the activity of neurons. However, as an important form of intervention in epilepsy treatment, few people have linked the two, especially the related dynamic mechanisms have not been explained clearly. METHODS: Considering that electromagnetic induction has some brain area dependence, we proposed a modified two-compartment cortical thalamus model and set eight different key bifurcation parameters to study the transition mechanisms of epilepsy. We compared and analyzed the application and getting rid of memristors of single-compartment and coupled models. In particular, we plotted bifurcation diagrams to analyze the dynamic mechanisms behind abundant discharge activities, which mainly involved Hopf bifurcations (HB), fold of cycle bifurcations (LPC) and torus bifurcations (TR). RESULTS: The results show that the coupled model can trigger more discharge states due to the driving effect between compartments. Moreover, the most remarkable finding of this study is that the memristor shows two sides. On the one hand, it may reduce tonic discharges. On the other hand, it may cause new pathological states. CONCLUSIONS: The work explains the control effect of memristors on different brain regions and lays a theoretical foundation for future targeted therapy. Finally, it is hoped that our findings will provide new insights into the role of electromagnetic induction in absence seizures.


Assuntos
Epilepsia Tipo Ausência , Humanos , Convulsões , Encéfalo , Neurônios , Fenômenos Eletromagnéticos , Eletroencefalografia
20.
Cogn Neurodyn ; 16(6): 1449-1460, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36408065

RESUMO

Different from many previous theoretical studies, this paper explores the regulatory mechanism of the spike and wave discharges (SWDs) in the reticular thalamic nucleus (TRN) by a dynamic computational model. We observe that the SWDs appears in the TRN by changing the coupling weights and delays in the thalamocortical circuit. The abundant poly-spikes wave discharges is also induced when the delay increases to large enough. These discharges can be inhibited by tuning the inhibitory output from the basal ganglia to the thalamus. The mechanisms of these waves can be explained in this model together with simulation results, which are different from the mechanisms in the cortex. The TRN is an important target in treating epilepsy, and the results may be a theoretical evidence for experimental study in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA