Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.216
Filtrar
1.
Acta Neuropathol ; 148(1): 14, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088078

RESUMO

Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia caused by a polyglutamine-coding CAG repeat expansion in the ATXN3 gene. While the CAG length correlates negatively with the age at onset, it accounts for approximately 50% of its variability only. Despite larger efforts in identifying contributing genetic factors, candidate genes with a robust and plausible impact on the molecular pathogenesis of MJD are scarce. Therefore, we analysed missense single nucleotide polymorphism variants in the PRKN gene encoding the Parkinson's disease-associated E3 ubiquitin ligase parkin, which is a well-described interaction partner of the MJD protein ataxin-3, a deubiquitinase. By performing a correlation analysis in the to-date largest MJD cohort of more than 900 individuals, we identified the V380L variant as a relevant factor, decreasing the age at onset by 3 years in homozygous carriers. Functional analysis in an MJD cell model demonstrated that parkin V380L did not modulate soluble or aggregate levels of ataxin-3 but reduced the interaction of the two proteins. Moreover, the presence of parkin V380L interfered with the execution of mitophagy-the autophagic removal of surplus or damaged mitochondria-thereby compromising cell viability. In summary, we identified the V380L variant in parkin as a genetic modifier of MJD, with negative repercussions on its molecular pathogenesis and disease age at onset.


Assuntos
Doença de Machado-Joseph , Mitofagia , Ubiquitina-Proteína Ligases , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Humanos , Ubiquitina-Proteína Ligases/genética , Mitofagia/genética , Mitofagia/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Polimorfismo de Nucleotídeo Único , Ataxina-3/genética , Idade de Início , Proteínas Repressoras
2.
CNS Neurosci Ther ; 30(7): e14842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39014518

RESUMO

AIMS: Spinocerebellar Ataxia Type 3 (SCA3) is a rare genetic ataxia that impacts the entire brain and is characterized as a neurodegenerative disorder affecting the neural network. This study explores how alterations in the functional hierarchy, connectivity, and structural changes within specific brain regions significantly contribute to the heterogeneity of symptom manifestations in patients with SCA3. METHODS: We prospectively recruited 51 patients with SCA3 and 59 age-and sex-matched healthy controls. All participants underwent comprehensive multimodal neuroimaging and clinical assessments. In SCA3 patients, an innovative approach utilizing gradients in resting-state functional connectivity (FC) was employed to examine atypical patterns of hierarchical processing topology from sensorimotor to supramodal regions in the cerebellum and cerebrum. Coupling analyses of abnormal FC and structural connectivity among regions of interest (ROIs) in the brain were also performed to characterize connectivity alterations. Additionally, relationships between quantitative ROI values and clinical variables were explored. RESULTS: Patients with SCA3 exhibited either compression or expansion within the primary sensorimotor-to-supramodal gradient through four distinct calculation methods, along with disruptions in FC and structural connectivity coupling. A comprehensive correlation was identified between the altered gradients and the clinical manifestations observed in patients. Notably, altered fractional anisotropy values were not significantly correlated with clinical variables. CONCLUSION: Abnormal gradients and connectivity in the cerebellar and cerebral cortices in SCA3 patients may contribute to disrupted motor-to-supramodal functions. Moreover, these findings support the potential utility of FCG analysis as a biomarker for diagnosing SCA3 and assessing treatment efficacy.


Assuntos
Doença de Machado-Joseph , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Doença de Machado-Joseph/fisiopatologia , Doença de Machado-Joseph/diagnóstico por imagem , Doença de Machado-Joseph/complicações , Doença de Machado-Joseph/patologia , Pessoa de Meia-Idade , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Estudos Prospectivos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Imagem de Tensor de Difusão/métodos
3.
Cell Rep Methods ; 4(7): 100816, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981474

RESUMO

We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.


Assuntos
Camundongos Endogâmicos C57BL , Células de Purkinje , Animais , Células de Purkinje/metabolismo , Camundongos , Núcleo Celular/metabolismo , Cerebelo/metabolismo , Cerebelo/citologia , Anticorpos , Proteínas de Ligação ao GTP , D-Ala-D-Ala Carboxipeptidase Tipo Serina
4.
J Intern Med ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973251

RESUMO

BACKGROUND: Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE: To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS: Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS: Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS: SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.

5.
J Huntingtons Dis ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38968052

RESUMO

Background: For various genetic disorders characterized by expanded cytosine-adenine-guanine (CAG) repeats, such as spinocerebellar ataxia (SCA) subtypes and Huntington's disease (HD), genetic interventions are currently being tested in different clinical trial phases. The patient's perspective on such interventions should be included in the further development and implementation of these new treatments. Objective: To obtain insight into the thoughts and perspectives of individuals with SCA and HD on genetic interventions. Methods: In this qualitative study, participants were interviewed using semi-structured interview techniques. Topics discussed were possible risks and benefits, and logistic factors such as timing, location and expertise. Data were analyzed using a generic thematic analysis. Responses were coded into superordinate themes. Results: Ten participants (five with SCA and five with HD) were interviewed. In general, participants seemed to be willing to undergo genetic interventions. Important motives were the lack of alternative disease-modifying treatment options, the hope for slowing down disease progression, and preservation of current quality of life. Before undergoing genetic interventions, participants wished to be further informed. Logistic factors such as mode and frequency of administration, expertise of the healthcare provider, and timing of treatment are of influence in the decision-making process. Conclusions: This study identified assumptions, motives, and topics that require further attention before these new therapies, if proven effective, can be implemented in clinical practice. The results may help in the design of care pathways for genetic interventions for these and other rare genetic movement disorders.

6.
Cerebellum ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969840

RESUMO

BACKGROUND: The age at onset (AO) of Machado-Joseph disease (SCA3/MJD), a disorder due to an expanded CAG repeat (CAGexp) in ATXN3, is quite variable and the role of environmental factors is still unknown. Caffeine was associated with protective effects against other neurodegenerative diseases, and against SCA3/MJD in transgenic mouse models. We aimed to evaluate whether caffeine consumption and its interaction with variants of caffeine signaling/metabolization genes impact the AO of this disease. METHODS: a questionnaire on caffeine consumption was applied to adult patients and unrelated controls living in Rio Grande do Sul, Brazil. AO and CAGexp were previously determined. SNPs rs5751876 (ADORA2A), rs2298383 (ADORA2A), rs762551 (CYP1A2) and rs478597 (NOS1) were genotyped. AO of subgroups were compared, adjusting the CAGexp to 75 repeats (p < 0.05). RESULTS: 171/179 cases and 98/100 controls consumed caffeine. Cases with high and low caffeine consumption (more or less than 314.5 mg of caffeine/day) had mean (SD) AO of 35.05 (11.44) and 35.43 (10.08) years (p = 0.40). The mean (SD) AO of the subgroups produced by the presence or absence of caffeine-enhancing alleles in ADORA2A (T allele at rs5751876 and rs2298383), CYP1A2 (C allele) and NOS1 (C allele) were all similar (p between 0.069 and 0.516). DISCUSSION: Caffeine consumption was not related to changes in the AO of SCA3/MJD, either alone or in interaction with protective genotypes at ADORA2A, CYP1A2 and NOS1.

7.
ACS Chem Neurosci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996083

RESUMO

Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.

8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000316

RESUMO

We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.


Assuntos
Ataxina-3 , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Doença de Machado-Joseph , Camundongos Endogâmicos C57BL , Animais , Dependovirus/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Injeções Intravenosas , Barreira Hematoencefálica/metabolismo , Regiões Promotoras Genéticas
9.
Neurodegener Dis ; : 1-9, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934198

RESUMO

INTRODUCTION: Spinocerebellar ataxia type 36 (SCA36) is caused by large GGCCTG repeat expansion in the NOP56 gene. The genetic diagnosis based on Southern blot is expensive and time-consuming. This study aimed to evaluate the reliability and effectiveness of whole exome sequencing (WES) for routine genetic diagnosis of suspected SCA36 patients. METHODS: Pathogenic repeat expansions for SCAs including SCA36 were first analyzed based on WES data using ExpansionHunter in five probands from SCA families, then the results were confirmed by triplet repeat primed polymerase chain reaction (TP-PCR) and Southern blot. RESULTS: GGCCTG repeat expansion in NOP56 was indicated in all five probands by WES, then it was found in 11 SCA patients and three asymptomatic individuals by TP-PCR. The sizes of GGCCTG repeat expansions were confirmed to be 1,390-1,556 by Southern blot. The mean age at onset of the patients was 51.0 ± 9.3 (ranging from 41 to 71), and they presented slowly progressive cerebellar ataxia, atrophy and fasciculation in tongue or limb muscles. CONCLUSION: The patients were clinically and genetically diagnosed as SCA36. This study proposed that WES could be a rapid, reliable, and cost-effective routine test for the preliminarily detection of SCA36 and other ataxia diseases.

10.
J Neurol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886208

RESUMO

BACKGROUND: Autosomal-dominant spinocerebellar ataxia (ADCA) due to intronic GAA repeat expansion in FGF14 (SCA27B) is a recent, relatively common form of late-onset ataxia. OBJECTIVE: Here, we aimed to: (1) investigate the relative frequency of SCA27B in different clinically defined disease subgroups with late-onset ataxia collected among 16 tertiary Italian centers; (2) characterize phenotype and diagnostic findings of patients with SCA27B; (3) compare the Italian cohort with other cohorts reported in recent studies. METHODS: We screened 396 clinically diagnosed late-onset cerebellar ataxias of unknown cause, subdivided in sporadic cerebellar ataxia, ADCA, and multisystem atrophy cerebellar type. We identified 72 new genetically defined subjects with SCA27B. Then, we analyzed the clinical, neurophysiological, and imaging features of 64 symptomatic cases. RESULTS: In our cohort, the prevalence of SCA27B was 13.4% (53/396) with as high as 38.5% (22/57) in ADCA. The median age of onset of SCA27B patients was 62 years. All symptomatic individuals showed evidence of impaired balance and gait; cerebellar ocular motor signs were also frequent. Episodic manifestations at onset occurred in 31% of patients. Extrapyramidal features (17%) and cognitive impairment (25%) were also reported. Brain magnetic resonance imaging showed cerebellar atrophy in most cases (78%). Pseudo-longitudinal assessments indicated slow progression of ataxia and minimal functional impairment. CONCLUSION: Patients with SCA27B in Italy present as an adult-onset, slowly progressive cerebellar ataxia with predominant axial involvement and frequent cerebellar ocular motor signs. The high consistency of clinical features in SCA27B cohorts in multiple populations paves the way toward large-scale, multicenter studies.

11.
Front Cell Neurosci ; 18: 1406709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827782

RESUMO

Voltage-gated ion channels are essential for membrane potential maintenance, homeostasis, electrical signal production and controlling the Ca2+ flow through the membrane. Among all ion channels, the key regulators of neuronal excitability are the voltage-gated potassium channels (KV), the largest family of K+ channels. Due to the ROS high levels in the aging brain, K+ channels might be affected by oxidative agents and be key in aging and neurodegeneration processes. This review provides new insight about channelopathies in the most studied neurodegenerative disorders, such as Alzheimer Disease, Parkinson's Disease, Huntington Disease or Spinocerebellar Ataxia. The main affected KV channels in these neurodegenerative diseases are the KV1, KV2.1, KV3, KV4 and KV7. Moreover, in order to prevent or repair the development of these neurodegenerative diseases, previous KV channel modulators have been proposed as therapeutic targets.

13.
Trends Mol Med ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38839514

RESUMO

Polyglutamine (polyQ) disorders are monogenic neurodegenerative disorders. Currently, no therapies are available for this complex group of disorders. Here, we aim to provide an overview of recent promising preclinical studies and the ongoing clinical trials focusing on molecular therapies for polyQ disorders.

14.
Neurosci Bull ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869703

RESUMO

This study aimed to identify possible pathogenic genes in a 90-member family with a rare combination of multiple neurodegenerative disease phenotypes, which has not been depicted by the known neurodegenerative disease. We performed physical and neurological examinations with International Rating Scales to assess signs of ataxia, Parkinsonism, and cognitive function, as well as brain magnetic resonance imaging scans with seven sequences. We searched for co-segregations of abnormal repeat-expansion loci, pathogenic variants in known spinocerebellar ataxia-related genes, and novel rare mutations via whole-genome sequencing and linkage analysis. A rare co-segregating missense mutation in the CARS gene was validated by Sanger sequencing and the aminoacylation activity of mutant CARS was measured by spectrophotometric assay. This pedigree presented novel late-onset core characteristics including cerebellar ataxia, Parkinsonism, and pyramidal signs in all nine affected members. Brain magnetic resonance imaging showed cerebellar/pons atrophy, pontine-midline linear hyperintensity, decreased rCBF in the bilateral basal ganglia and cerebellar dentate nucleus, and hypo-intensities of the cerebellar dentate nuclei, basal ganglia, mesencephalic red nuclei, and substantia nigra, all of which suggested neurodegeneration. Whole-genome sequencing identified a novel pathogenic heterozygous mutation (E795V) in the CARS gene, meanwhile, exhibited none of the known repeat-expansions or point mutations in pathogenic genes. Remarkably, this CARS mutation causes a 20% decrease in aminoacylation activity to charge tRNACys with L-cysteine in protein synthesis compared with that of the wild type. All family members carrying a heterozygous mutation CARS (E795V) had the same clinical manifestations and neuropathological changes of Parkinsonism and spinocerebellar-ataxia. These findings identify novel pathogenesis of Parkinsonism-spinocerebellar ataxia and provide insights into its genetic architecture.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38854909

RESUMO

Background: The tremor characteristics of patients with spinocerebellar ataxia 12 (SCA12) are often likened to those in patients with essential tremor (ET); however, data are sparse, and videotaped tremor examinations are rare. Case Report: A 37-year-old woman with progressive hand and head tremors underwent genetic testing after conventional diagnostics failed to explain her symptoms. A PPP2R2B variation confirmed spinocerebellar ataxia type 12 (SCA12), a condition not previously considered because classical cerebellar signs were absent. The tremor characteristics of this patient differed in numerous respects from those seen in patients with ET. Discussion: Although often likened to ET, under careful scrutiny, the tremor characteristics observed in this patient with SCA12 were inconsistent with those typically seen in ET. Such discrepancies highlight the necessity of careful phenotyping for tremor disorders, particularly in familial cases. Recognizing the specific tremor phenomenology of SCA12 and distinguishing it from ET is crucial to avoid misdiagnosis and to guide appropriate management and familial counseling. Highlights: This report characterizes in detail an early-stage SCA12 patient initially misdiagnosed as essential tremor, underscoring the importance of nuanced clinical assessment and genetic testing in atypical tremor cases. Similar patients should be meticulously phenotyped to prevent misclassification and enhance our understanding of tremor pathophysiology.


Assuntos
Tremor Essencial , Fenótipo , Ataxias Espinocerebelares , Tremor , Humanos , Feminino , Adulto , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico , Tremor Essencial/genética , Tremor Essencial/fisiopatologia , Tremor Essencial/diagnóstico , Tremor/genética , Tremor/fisiopatologia , Tremor/diagnóstico , Diagnóstico Diferencial
17.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900277

RESUMO

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Assuntos
Autofagia , Endossomos , Peptídeos , Animais , Peptídeos/metabolismo , Endossomos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Ativo do Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Enterócitos/metabolismo , Modelos Animais de Doenças , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismo
18.
Parkinsonism Relat Disord ; 124: 107013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843619

RESUMO

INTRODUCTION: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease characterized by increasingly worsening ataxia and non-ataxia features, negatively impacting patients' quality of life. This study was designed to test formally evaluate whether oral trehalose was effective in SCA3 patients. METHODS: In this double-blind, randomized controlled trial, SCA3 patients received either 100 g oral trehalose or 30 g maltose to improve ataxia severity over six months. We also measured other clinical (non-ataxia), patient-reported (quality of life, motivations), and safety endpoints. An unscheduled interim analysis was conducted using two-way ANOVAs to analyze the interaction between time (baseline, 3-months, 6-months) and intervention (Trehalose vs. Placebo). RESULTS: Fifteen participants (Trehalose = 7 vs. Placebo = 8) completed the study at the time of interim analysis. There was no interaction effect on the ataxia severity, and available data suggested an estimated sample size of 132 (66 per arm) SCA3 patients required to demonstrate changes in a 6-month trial. There were significant interaction effects for executive function (ƞ2 = 0.28-0.43). Safety data indicated that 100 g oral trehalose was well-tolerated. CONCLUSION: We performed an unplanned interim analysis due to a slow recruitment rate. The new estimated sample size was deemed unfeasible, leading to premature termination of the clinical trial. In this small, current sample of SCA3 patients, 100 g oral trehalose did not differentially impact on ataxia severity compared to placebo. Interestingly, our findings may suggest an improvement in executive function. Future efforts will require a large multi-country, multi-center study to investigate the potential effect of trehalose.


Assuntos
Doença de Machado-Joseph , Trealose , Humanos , Trealose/administração & dosagem , Trealose/farmacologia , Método Duplo-Cego , Masculino , Feminino , Pessoa de Meia-Idade , Doença de Machado-Joseph/tratamento farmacológico , Adulto , Administração Oral , Idoso , Índice de Gravidade de Doença , Qualidade de Vida , Avaliação de Resultados em Cuidados de Saúde
19.
Mol Genet Genomic Med ; 12(6): e2466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860480

RESUMO

BACKGROUND: Spinocerebellar ataxia 29 (SCA29) is a rare genetic disorder characterized by early-onset ataxia, gross motor delay, and infantile hypotonia, and is primarily associated with variants in the ITPR1 gene. Cases of SCA29 in Asia are rarely reported, limiting our understanding of this disease. METHODS: A female Korean infant, demonstrating clinical features of SCA29, underwent evaluation and rehabilitation at our outpatient clinic from the age of 3 months to the current age of 4 years. Trio-based genome sequencing tests were performed on the patient and her biological parents. RESULTS: The infant initially presented with macrocephaly, hypotonia, and nystagmus, with nonspecific findings on initial neuroimaging. Subsequent follow-up revealed gross motor delay, early onset ataxia, strabismus, and cognitive impairment. Further neuroimaging revealed atrophy of the cerebellum and vermis, and genetic analysis revealed a de novo pathogenic heterozygous c.800C>T, p.Thr267Met missense mutation in the ITPR1 gene (NM_001378452.1). CONCLUSION: This is the first reported case of SCA29 in a Korean patient, expanding the genetic and phenotypic spectrum of ITPR1-related ataxias. Our case highlights the importance of recognizing early-onset ataxic symptoms, central hypotonia, and gross motor delays with poor ocular fixation, cognitive deficits, and isolated cerebellar atrophy as crucial clinical indicators of SCA29.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato , Mutação de Sentido Incorreto , Degenerações Espinocerebelares , Humanos , Feminino , Receptores de Inositol 1,4,5-Trifosfato/genética , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Pré-Escolar , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Lactente
20.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850215

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Assuntos
Cerebelo , Conectoma , Doença de Machado-Joseph , Transcriptoma , Humanos , Masculino , Feminino , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Pessoa de Meia-Idade , Adulto , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico por imagem , Doença de Machado-Joseph/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA