Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Chemosphere ; 364: 143222, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236917

RESUMO

Anammox bacteria (AnAOB) can be easily enriched under high temperatures and high substrate concentrations, while the application of the mainstream anammox process in low substrate municipal sewage is still relatively uncommon. Therefore, this study investigated the enrichment of AnAOB under conditions of low ammonia nitrogen and nitrite concentration at 25 °C. Results showed that using inoculated aerobic sludge, four ASBRs (R1, R2, R3 and R4) were successfully initiated with different influent substrate (NO2--N/NH4+-N) ratios of 1.2, 1.32, 1.4 and 1.5, respectively, with reactor start-up times were 162, 150, 120 and 134 days, respectively. The values of ΔNO2--N/ΔNH4+-N in reactors were stable at 1.17, 1.32, 1.43 and 1.53 respectively. The increase in influent substrate ratios resulted in improved TN removal rates and accelerated consumption of chemical oxygen demand (COD) during the initial start-up stage. The maximum TN removal rates achieved in the four reactors were 76.09%, 79.24%, 82.82% and 82.63%, respectively. The color of sludge gradually changes from yellowish-brown to reddish-brown. Furthermore, the surface of sludge exhibited a porous mineral structure, with crater-like cavities. The dominant anammox species in the system was identified as Candida Brocadia (3.04%). According to qPCR, the abundance of hzsB in the system is 1.65 × 1012 copies/g VSS, confirming the effective enrichment of AnAOB.

2.
Huan Jing Ke Xue ; 45(7): 4074-4081, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022955

RESUMO

The application of ANAMMOX technology is constrained by sluggish growth and difficulty in enriching ANAMMOX bacteria. Long-term starvation of functioning bacteria due to limited substrate supply makes the steady operation of ANAMMOX reactors more difficult. Re-examining the start-up and recovery performance of the ANAMMOX reactor and identifying its resistance mechanism are important from the standpoint of long-term starvation. By inoculating nitrifying and denitrifying sludge under various operating circumstances, the ANAMMOX reactors were successfully started. Under various start-up procedures, the tolerance mechanism and recovery performance were examined. The outcomes demonstrated that the denitrifying sludge-inoculated reactor operated steadily with a high substrate concentration and low flow rate. After 85 days of operation, the removal efficiencies of NH4+-N, NO2--N, and total nitrogen reached 98.7%, 99.3%, and 89.3%, respectively. After 144 days of starvation and 30 days of recovery, the better nitrogen removal performance was achieved at a low substrate concentration and high flow rate, and the removal efficiencies were 99.8% (NH4+-N), 99.8% (NO2--N), and 93.6% (total nitrogen). During the starvation, extracellular polymeric substances wrapped the ANAMMOX bacteria and kept them intact to resist long-term starvation stress. The expression of nirS, hzsA, and hdh genes ensured the synthesis of nitrite/nitric oxide oxidoreductase, hydrazine synthase, and hydrazine dehydrogenase to maintain ANAMMOX activity. There was no significant difference in the relative abundance of ANAMMOX bacteria before and after starvation recovery. Candidatus Kuenenia had better anti-hunger ability, and the relative abundance increased by more than 86% after 30 days of recovery, confirming its tolerance to long-term starvation.


Assuntos
Reatores Biológicos , Nitrogênio , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Nitrogênio/isolamento & purificação , Compostos de Amônio/metabolismo , Oxirredução , Esgotos/microbiologia , Anaerobiose , Bactérias/metabolismo , Desnitrificação , Bactérias Anaeróbias/metabolismo , Amônia/metabolismo
3.
Water Res ; 261: 121984, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924949

RESUMO

The proliferation of nitrite oxidizing bacteria (NOB) still remains as a major challenge for nitrogen removal in mainstream wastewater treatment process based on partial nitrification (PN). This study investigated different operational conditions to establish mainstream PN for the fast start-up of membrane aerated biofilm reactor (MABR) systems. Different oxygen controlling strategies were adopted by employing different influent NH4+-N loads and oxygen supply strategies to inhibit NOB. We indicated the essential for NOB suppression was to reduce the oxygen concentration of the inner biofilm and the thickness of aerobic biofilm. A higher NH4+-N load (7.4 g-N/(m2·d)) induced higher oxygen utilization rate (14.4 g-O2/(m2·d)) and steeper gradient of oxygen concentration, which reduced the thickness of aerobic biofilm. Employing closed-end oxygen supply mode exhibited the minimum concentration of oxygen to realize PN, which was over 46% reduction of the normal open-end oxygen mode. Under the conditions of high NH4+-N load and closed-end oxygen supply mode, the microbial community exhibited a comparative advantage of ammonium oxidizing bacteria over NOB in the aerobic biofilm, with a relative abundance of Nitrosomonas of 30-40% and no detection of Nitrospira. The optimal fast start-up strategy was proposed with open-end aeration mode in the first 10 days and closed-end mode subsequently under high NH4+-N load. The results revealed the mechanism of NOB inhibition on the biofilm and provided strategies for a quick start-up and stable mainstream PN simultaneously, which poses great significance for the future application of MABR.


Assuntos
Biofilmes , Reatores Biológicos , Nitrificação , Oxigênio , Oxigênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Membranas Artificiais , Águas Residuárias/química
4.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844318

RESUMO

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Assuntos
Compostos de Amônio , Filtração , Manganês , Óxidos , Manganês/química , Óxidos/química , Compostos de Amônio/química , Filtração/métodos , Poluentes Químicos da Água/química , Permanganato de Potássio/química , Compostos de Manganês/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Compostos de Potássio/química , Adsorção , Compostos Férricos/química , Compostos de Ferro
5.
Health Econ Rev ; 14(1): 35, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771498

RESUMO

BACKGROUND: Estimating program costs when planning community-based mental health programs can be burdensome. Our aim was to retrospectively document the cost for the first year of planning and implementing Healthy Minds Healthy Communities (HMHC), a mental health promotion and prevention multi-level intervention initiative. This Program is among the first to use the Community Initiated Care (CIC) model in the US and is aimed at building community resilience and the capacity for communities to provide mental health support, particularly among those disproportionately impacted by COVID-19. Our objective is to share our methods for costing a program targeting 10 zip codes that are ethnically and linguistically diverse and provide an example for estimating the cost of a mental health prevention and promotion programs consisting of multiple evidence-based interventions. METHODS: We used a semi-structured interview process to collect cost data through the first year of program planning, start-up and initial implementation from key staff. We calculated costs for each activity, grouped them by major project categories, and identified the cost drivers of each category. We further validated cost estimates through extensive literature review. The cost analysis was done from the provider's perspective, which included the implementing agency and its community partners. We delineated costs that were in-kind contributions to the program by other agency, and community partners. Sensitivity analyses were conducted to estimate uncertainty around parameters. RESULTS: For the first year of the development and implementation of the program, (funded through program and in-kind) is estimated at $1,382,669 (2022 US$). The costs for the three main activity domains for this project are: project management $135,822, community engagement $364,216 and design and execution $756,934. Overall, the cost drivers for the first year of this intervention were: hiring and onboarding staff, in-person community building/learning sessions, communications and marketing, and intervention delivery. CONCLUSION: Implementation of community-based mental health promotion and prevention programs, when utilizing a participatory approach, requires a significant amount of upfront investment in program planning and development. A large proportion of this investment tends to be human capital input. Developing partnerships is a successful strategy for defraying costs.

6.
Sci Total Environ ; 933: 173190, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38744392

RESUMO

Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible.


Assuntos
Nitrificação , Fenacetina , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Bactérias/metabolismo
7.
J Environ Manage ; 359: 121068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728989

RESUMO

Anaerobic digestion (AD) has become a popular technique for organic waste management while offering economic and environmental advantages. As AD becomes increasingly prevalent worldwide, research efforts are primarily focused on optimizing its processes. During the operation of AD systems, the occurrence of unstable events is inevitable. So far, numerous conclusions have been drawn from full and lab-scale studies regarding the driving factors of start-up perturbations. However, the lack of standardized practices reported in start-up studies raises concerns about the comparability and reliability of obtained data. This study aims to develop a knowledge database and investigate the possibility of applying machine learning techniques on experimentation-extracted data to assist start-up planning and monitoring. Thus, a standardized database referencing 75 cases of start-up of one-stage wet continuously-stirred tank reactors (CSTR) processing agricultural, industrial, or municipal organic effluent in mono-digestion from 31 studies was constructed. 10 % of the total observations included in this database concern failed start-up experiments. Then, correlations between the parameters and their impacts on the start-up duration were studied using multivariate analysis and a model-based ranking methodology. Insights into trends of choices were highlighted through the correlation analysis of the database. As such, scenarios favoring short start-up duration were found to involve relatively low retention times (average initial and final hydraulic retention times, (HRTi) and (HRTf) of 26.25 and 20.6 days, respectively), high mean organic loading rates (average OLRmean of 5.24 g VS·d-1·L -1) and the processing of highly fermentable substrates (average feed volatile solids (VSfeed) of 81.35 g L-1). The model-based ranking of AD parameters demonstrated that the HRTf, the VSfeed, and the target temperature (Tf) have the strongest impact on the start-up duration, receiving the highest relative scores among the evaluated AD parameters. The database could serve as a reference for comparison purposes of future start-up studies allowing the identification of factors that should be closely controlled.


Assuntos
Reatores Biológicos , Anaerobiose , Gerenciamento de Resíduos/métodos
8.
Addict Sci Clin Pract ; 19(1): 23, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566249

RESUMO

BACKGROUND: Communities That HEAL (CTH) is a novel, data-driven community-engaged intervention designed to reduce opioid overdose deaths by increasing community engagement, adoption of an integrated set of evidence-based practices, and delivering a communications campaign across healthcare, behavioral-health, criminal-legal, and other community-based settings. The implementation of such a complex initiative requires up-front investments of time and other expenditures (i.e., start-up costs). Despite the importance of these start-up costs in investment decisions to stakeholders, they are typically excluded from cost-effectiveness analyses. The objective of this study is to report a detailed analysis of CTH start-up costs pre-intervention implementation and to describe the relevance of these data for stakeholders to determine implementation feasibility. METHODS: This study is guided by the community perspective, reflecting the investments that a real-world community would need to incur to implement the CTH intervention. We adopted an activity-based costing approach, in which resources related to hiring, training, purchasing, and community dashboard creation were identified through macro- and micro-costing techniques from 34 communities with high rates of fatal opioid overdoses, across four states-Kentucky, Massachusetts, New York, and Ohio. Resources were identified and assigned a unit cost using administrative and semi-structured-interview data. All cost estimates were reported in 2019 dollars. RESULTS: State-level average and median start-up cost (representing 8-10 communities per state) were $268,657 and $175,683, respectively. Hiring and training represented 40%, equipment and infrastructure costs represented 24%, and dashboard creation represented 36% of the total average start-up cost. Comparatively, hiring and training represented 49%, purchasing costs represented 18%, and dashboard creation represented 34% of the total median start-up cost. CONCLUSION: We identified three distinct CTH hiring models that affected start-up costs: hospital-academic (Massachusetts), university-academic (Kentucky and Ohio), and community-leveraged (New York). Hiring, training, and purchasing start-up costs were lowest in New York due to existing local infrastructure. Community-based implementation similar to the New York model may have lower start-up costs due to leveraging of existing infrastructure, relationships, and support from local health departments.


Assuntos
Overdose de Opiáceos , Humanos , Atenção à Saúde , Massachusetts , Prática Clínica Baseada em Evidências
9.
Water Sci Technol ; 89(8): 2118-2131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678413

RESUMO

Biochar-assisted anaerobic digestion (AD) remains constrained due to the inefficient decomposition of complex organics, even with the direct interspecies electron transfer (DIET) pathway. The coupling of electrochemistry with the anaerobic biological treatment could shorten lengthy retention time in co-digestion by improving electron transfer rates and inducing functional microbial acclimation. Thus, this work investigated the potential of improving the performance of AD by coupling low-magnitude electric fields with biochar derived from the anaerobically digested biogas residue. Different voltages (0.3, 0.6, and 0.9 V) were applied at various stages to assess the impact on biochar-assisted AD. The results indicate that an external voltage of 0.3 V, coupled with 5 g/L of biochar, elevates CH4 yield by 45.5% compared to biogas residue biochar alone, and the coupled approach increased biogas production by up to 143% within 10 days. This finding may be partly explained by the enhanced utilization of substrates and the increased amounts of specific methanogens such as Methanobacterium and Methanosarcina. The abundance of the former increased from 4.0 to 11.3%, which enhances the DIET between microorganisms. Furthermore, the coupling method shows better potential for enhancing AD compared to preparing iron-based biochar, and these results present potential avenues for its broader applications.


Assuntos
Biocombustíveis , Carvão Vegetal , Esgotos , Carvão Vegetal/química , Anaerobiose , Esgotos/química , Reatores Biológicos , Eletricidade , Metano/metabolismo , Perda e Desperdício de Alimentos
10.
Trials ; 25(1): 240, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581073

RESUMO

BACKGROUND/AIMS: In order to make the centers more attractive to trial sponsors, in recent years, some research institutions around the world have pursued projects to reorganize the pathway of trial activation, developing new organizational models to improve the activation process and reduce its times. This study aims at analyzing and reorganizing the start-up phase of trials conducted at the Research and Innovation Department (DAIRI) of the Public Hospital of Alessandria (Italy). METHODS: A project was carried out to reorganize the trial authorization process at DAIRI by involving the three facilities responsible for this pathway: clinical trial center (CTC), ethics committee secretariat (ESC), and administrative coordination (AC). Lean Thinking methodology was used with the A3 report tool, and the analysis was carried out by monitoring specific key performance indicators, derived from variables representing highlights of the trials' activation pathway. The project involved phases of analysis, implementation of identified countermeasures, and monitoring of timelines in eight 4-month periods. The overall mean and median values of studies activation times were calculated as well as the average times for each facility involved in the process. RESULTS: In this study, 298 studies both sponsored by research associations and industry with both observational and interventional study design were monitored. The mean trial activation time was reduced from 218 days before the project to 56 days in the last period monitored. From the first to the last monitoring period, each facility involved achieved at least a halving of the average time required to carry out its activities in the clinical trials' activation pathway (CTC: 55 days vs 23, ECS: 25 days vs 8, AC 29 days vs 10). Average activation time for studies with agreement remains longer than those without agreement (100 days vs. 46). CONCLUSIONS: The reorganization project emphasized the importance of having clinical and administrative staff specifically trained on the trial activation process. This reorganization led to the development of a standard operating procedure and a tool to monitor the time (KPIs of the process) that can also be implemented in other clinical centers.


Assuntos
Comissão de Ética , Projetos de Pesquisa , Humanos , Modelos Organizacionais , Itália
11.
J Clin Monit Comput ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619717

RESUMO

The purpose of this in vitro study was to evaluate the impact of the vertical level of the stopcock connecting the infusion line to the central venous catheter on start-up fluid delivery in microinfusions. Start-up fluid delivery was measured under standardized conditions with the syringe outlet and liquid flow sensors positioned at heart level (0 cm) and exposed to a simulated CVP of 10 mmHg at a set flow rate of 1 ml/h. Flow and intraluminal pressures were measured with the infusion line connected to the stopcock primarily placed at vertical levels of 0 cm, + 30 cm and - 30 cm or primarily placed at 0 cm and secondarily, after connecting the infusion line, displaced to + 30 cm and - 30 cm. Start-up fluid delivery 10 s after opening the stopcock placed at zero level and after opening the stopcock primarily connected at zero level and secondary displaced to vertical levels of + 30 cm and - 30 cm were similar (- 10.52 [- 13.85 to - 7.19] µL; - 8.84 [- 12.34 to - 5.33] µL and - 11.19 [- 13.71 to - 8.67] µL (p = 0.469)). Fluid delivered at 360 s related to 65% (zero level), 71% (+ 30 cm) and 67% (- 30 cm) of calculated infusion volume (p = 0.395). Start-up fluid delivery with the stopcock primarily placed at + 30 cm and - 30 cm resulted in large anterograde and retrograde fluid volumes of 34.39 [33.43 to 35.34] µL and - 24.90 [- 27.79 to - 22.01] µL at 10 s, respectively (p < 0.0001). Fluid delivered with the stopcock primarily placed at + 30 cm and - 30 cm resulted in 140% and 35% of calculated volume at 360 s, respectively (p < 0.0001). Syringe infusion pumps should ideally be connected to the stopcock positioned at heart level in order to minimize the amounts of anterograde and retrograde fluid volumes after opening of the stopcock.

12.
Bioelectrochemistry ; 158: 108706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608340

RESUMO

Key nutrients, such as nitrogen measured as total ammonium nitrogen (TAN), could be recycled from hydrolysed human urine back to fertiliser use. Bioelectrochemical systems (BESs) are an interesting, low-energy option for realising this. However, the high TAN concentration (> 5 g L-1) and pH (> 9) of hydrolysed urine can inhibit microbial growth and hinder the enrichment of an electroactive biofilm at the anode. This study investigated a new strategy for bioanode inoculation by mixing real hydrolysed urine with thickened waste activated sludge (TWAS) from a municipal wastewater treatment plant at different volumetric ratios. The addition of TWAS diluted the high TAN concentration of hydrolysed urine (5.2 ± 0.3 g L-1) to 2.6-5.1 g L-1, while the pH of the inoculation mixtures remained > 9 and soluble chemical oxygen demand (sCOD) at 5.6-6.7 g L-1. Despite the high pH, current generation started within 24 h for all reactors, and robust bioanodes tolerant of continuous feeding with undiluted hydrolysed urine were enriched within 11 days of start-up. Current output and Coulombic efficiency decreased with increasing initial hydrolysed urine fraction. The anodes inoculated with the highest sCOD-to-TAN ratio (2.1) performed the best, which suggests that high organics levels can protect microbes from inhibition even at elevated TAN concentrations.


Assuntos
Fontes de Energia Bioelétrica , Urina , Humanos , Urina/química , Urina/microbiologia , Hidrólise , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Biofilmes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Esgotos/microbiologia , Esgotos/química
13.
Bioprocess Biosyst Eng ; 47(6): 851-862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676738

RESUMO

In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L-1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrogênio , Nitrogênio/química , Nitrogênio/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Águas Residuárias/microbiologia , Águas Residuárias/química , Nanopartículas de Magnetita/química
14.
Sci Rep ; 14(1): 6384, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493241

RESUMO

High-quality biofilm carriers are crucial for the formation of biofilm, but problems such as slow biofilm growth on the carrier surface have been troubling a large number of researchers. The addition of a carrier changes the flow state in the reactor, which in turn affects the microbial attachment and the quantity of microorganisms. Also, aerobic microorganisms need to use dissolved oxygen in the water to remove water pollutants. In this paper, a novel recirculating flow carrier with a hollow cylinder structure is proposed, with a certain number of hollow inverted circular plates placed at equal distances inside. In this paper, the hydraulic residence time, aeration volume, and the spacing of the inflow plates of the recirculating flow biofilm carrier, which are three important factors affecting the hydraulic characteristics of the reactor, are first investigated. At the same time, it was compared with the common combined carrier to find the optimal operating conditions for the hydraulic characteristics. Secondly, a reactor start-up study was carried out to confirm that the new recirculating flow biofilm carrier could accelerate the biofilm growth by changing the hydraulic characteristics. The results showed that under the same conditions, the hydraulic properties of the reactor were better with the addition of the recirculating flow carrier, with an effective volume ratio of 98% and a significant reduction in short flows and dead zones. The stabilized removal of COD, NH3-N, and TN in the reactor with the addition of the recirculating flow carrier reached about 94%, 99%, and 91% respectively, at the beginning of the 15th day, which effectively proved the feasibility of the recirculating flow carrier.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Nitrogênio
15.
ChemSusChem ; : e202400303, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507245

RESUMO

Advanced in situ analyses are indispensable for comprehending the catalyst aging mechanisms of Pt-based PEM fuel cell cathode materials, particularly during accelerated stress tests (ASTs). In this study, a combination of in situ small-angle and wide-angle X-ray scattering (SAXS & WAXS) techniques were employed to establish correlations between structural parameters (crystal phase, quantity, and size) of a highly active skeleton-PtCo (sk-PtCo) catalyst and their degradation cycles within the potential range of the start-up/shut-down (SUSD) conditions. Despite the complex case of the sk-PtCo catalyst comprising two distinct fcc alloy phases, our complementary techniques enabled in situ monitoring of structural changes in each crystal phase in detail. Remarkably, the in situ WAXS measurements uncover two primary catalyst aging processes, namely the cobalt depletion (regime I) followed by the crystallite growth via Ostwald ripening and/or particle coalescence (regime II). Additionally, in situ SAXS data reveal a continuous size growth over the AST. The Pt-enriched shell thickening based on the Co depletion within the first 100 SUSD cycles and particle growth induced by additional potential cycles were also collaborated by ex situ STEM-EELS. Overall, our work shows a comprehensive aging model for the sk-PtCo catalyst probed by complementary in situ WAXS and SAXS techniques.

16.
Adv Sci (Weinh) ; 11(12): e2307073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225690

RESUMO

Polymer electrolyte membrane fuel cells (PEMFCs) suffer from severe performance degradation when operating under harsh conditions such as fuel starvation, shut-down/start-up, and open circuit voltage. A fundamental solution to these technical issues requires an integrated approach rather than condition-specific solutions. In this study, an anode catalyst based on Pt nanoparticles encapsulated in a multifunctional carbon layer (MCL), acting as a molecular sieve layer and protective layer is designed. The MCL enabled selective hydrogen oxidation reaction on the surface of the Pt nanoparticles while preventing their dissolution and agglomeration. Thus, the structural deterioration of a membrane electrode assembly can be effectively suppressed under various harsh operating conditions. The results demonstrated that redesigning the anode catalyst structure can serve as a promising strategy to maximize the service life of the current PEMFC system.

17.
J Clin Monit Comput ; 38(1): 213-220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610525

RESUMO

Start-up delays of syringe pump assemblies can impede the timely commencement of an effective drug therapy when using microinfusions in hemodynamically unstable patients. The application of the venting principle has been proposed to eliminate start-up delays in syringe pump assemblies. However, effectively delivered infusion volumes using this strategy have so far not been measured. This invitro study used two experimental setups to measure the effect of the venting principle compared to a standard non-venting approach on delivered start-up infusion volumes at various timepoints, backflow volumes, flow inversion and zero drug delivery times by means of liquid flow measurements at flow rates of 0.5, 1.0 and 2.0 mL/h. Measured delivered initial start-up volumes were negative with all flow rates in the vented and non-vented setup. Maximum backflow volumes were 1.8 [95% CI 1.6 to 2.3] times larger in the vented setup compared to the non-vented setup (p < 0.0001). Conversely, times until flow inversion were 1.5 [95% CI 1.1 to 2.9] times shorter in the vented setup (p < 0.002). This led to comparable zero drug delivery times between the two setups (p = 0.294). Start-up times as defined by the achievement of at least 90% of steady state flow rate were achieved faster with the vented setup (p < 0.0001), but this was counteracted by the increased backflow volumes. The application of the venting principle to the start-up of microinfusions does not improve the timely delivery of drugs to the patient since the faster start-up times are counteracted by higher backflow volumes when opening the three-way stopcock.


Assuntos
Sistemas de Liberação de Medicamentos , Bombas de Infusão , Humanos , Infusões Intravenosas , Desenho de Equipamento
18.
Environ Sci Pollut Res Int ; 31(2): 2408-2418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066278

RESUMO

Due to the slow growth rate of anammox bacteria, enriched sludge is required for the rapid start-up of anammox-based reactors. However, it is still unclear if long-term stored anammox sludge (SAS) is an effective source of inoculum to accelerate reactor start-up. This study explored the reactivation of long-term SAS and developed an efficient protocol to reduce the start-up period of an anammox reactor. Although stored for 13 months, a low level of the specific anammox activity of 28 mg N/g VSS/d was still detected. Experimental Phase 1 involved the direct application of SAS to an upflow sludge bed reactor (USB) operated for 90 d under varying conditions of hydraulic retention time and nitrogen concentrations. In Phase 2, batch runs were executed prior to the continuous operation of the USB reactor. The biomass reactivation in the continuous flow reactor was unsuccessful. However, the SAS was effectively reactivated through a combination of batch runs and continuous flow feed. Within 75 days, the anammox process achieved a stable rate of nitrogen removal of 1.3 g N/L/day and a high nitrogen removal efficiency of 84.1 ± 0.2%. Anammox bacteria (Ca. Brocadia) abundance was 37.8% after reactivation. These overall results indicate that SAS is a feasible seed sludge for faster start-up of high-rate mainstream anammox reactors.


Assuntos
Oxidação Anaeróbia da Amônia , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio/análise , Oxirredução , Anaerobiose , Desnitrificação
19.
Bioresour Technol ; 394: 130201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092077

RESUMO

The implementation of the anaerobic ammonium oxidation (anammox) process in treating low-strength wastewater is limited by the difficulty in enriching anammox bacteria (AnAOB). Here, the first enrichment of AnAOB at a high nitrogen (N) loading rate (NLR) as a strategy was proposed to achieve the rapid start-up of the anammox biofilm process treating low-strength wastewater. The long-term stability of the anammox biofilm process after start-up operating at a low NLR of 0.2-0.4 kg N/(m3⋅d) was evaluated. Results showed that the N removal efficiency was up to 75 % under a low NLR of 0.2 kg N/(m3⋅d) condition. Low-strength organic matter promoted the metabolic coupling between partial denitrifying bacteria (PDB) and AnAOB. The genus Candidatus Brocadia as AnAOB (18 %-27 %) can coexist with Limnobacter (PDB, 9 %-12 %) for efficient N removal. This study offers a rapid start-up strategy of anammox biofilm process in treating low-strength wastewater.


Assuntos
Compostos de Amônio , Purificação da Água , Águas Residuárias , Oxidação Anaeróbia da Amônia , Desnitrificação , Oxirredução , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Biofilmes , Nitrogênio/metabolismo , Esgotos/microbiologia , Compostos de Amônio/metabolismo
20.
J Clin Monit Comput ; 38(2): 531-538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38064134

RESUMO

Microinfusions are commonly used for the administration of catecholamines, but start-up delays pose a problem for reliable and timely drug delivery. Recent findings show that venting of the syringe infusion pump with draining of fluid to ambient pressure before directing the flow towards the central venous catheter does not counteract start-up delays. With the aim to reduce start-up delays, this study compared fluid delivery during start-up of syringe infusion pumps without venting, with ambient pressure venting, and with central venous pressure (CVP)-adjusted venting. Start-up fluid delivery from syringe pumps using a microinfusion of 1 mL/h was assessed by means of liquid flow measurement at 10, 60, 180 and 360 s after opening the stopcock and starting the pump. Assessments were performed using no venting, ambient pressure venting or CVP-adjusted venting, with the pump placed either at zero, - 43 cm or + 43 cm level and exposed to a simulated CVP of 10 mmHg. Measured fluid delivery was closest to the calculated fluid delivery for CVP-adjusted venting (87% to 100% at the different timepoints). The largest deviations were found for ambient pressure venting (- 1151% to + 82%). At 360 s after start-up 72% to 92% of expected fluid volumes were delivered without venting, 46% to 82% with ambient pressure venting and 96% to 99% with CVP-adjusted venting. CVP-adjusted venting demonstrated consistent results across vertical pump placements (p = 0.485), whereas the other methods had significant variances (p < 0.001 for both). In conclusion, CVP-adjusted venting effectively eliminates imprecise drug delivery and start-up delays when using microinfusions.


Assuntos
Cateteres Venosos Centrais , Bombas de Infusão , Humanos , Desenho de Equipamento , Catecolaminas , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA