Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Front Plant Sci ; 15: 1413507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139723

RESUMO

Corn-soybean rotation is a cropping pattern to optimize crop structure and improve resource use efficiency, and nitrogen (N) fertilizer application is an indispensable tool to increase corn yields. However, the effects of N fertilizer application levels on corn yield and soil N storage under corn-soybean rotation have not been systematically studied. The experimental located in the central part of the Songnen Plain, a split-zone experimental design was used with two planting patterns of continuous corn (CC) and corn-soybean rotations (RC) in the main zone and three N application rates of 0, 180, and 360 kg hm-2 of urea in the secondary zone. The research has shown that RC treatments can enhance plant growth and increase corn yield by 4.76% to 79.92% compared to CC treatments. The amount of N fertilizer applied has a negative correlation with yield increase range, and N application above 180 kg hm-2 has a significantly lower effect on corn yield increase. Therefore, a reduction in N fertilizer application may be appropriate. RC increased soil N storage by improving soil N-transforming enzyme activity, improving soil N content and the proportion of soil organic N fractions. Additionally, it can improve plant N use efficiency by 1.4%-5.6%. Soybeans grown in corn-soybean rotations systems have the potential to replace more than 180 kg hm-2 of urea application. Corn-soybean rotation with low N inputs is an efficient and sustainable agricultural strategy.

2.
Sci Total Environ ; : 175485, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147061

RESUMO

Chemical properties and molecular diversity of dissolved organic matter (DOM) in agricultural soils are important for soil carbon dynamics and chlorine activity. Yet the chlorine reactivity of soil DOM at the molecular level under agricultural management practices remains unidentified. Here, we investigated the chlorine reactivity of soil DOM under long-term straw return and the molecular activities and transformations during chlorination. The 9-year straw return enhanced the chlorine reactivity of soil DOM, leading to increases in the production of traditional disinfection byproducts (DBPs) and decreases in the formation of emerging high molecular weight DBPs. C17HnOmCl1-2 and C22HnNmOzCl were the highest relative abundances of emerging DBPs. The emerging DBPs were primarily generated through chlorine substitution reactions, with their precursors exhibiting higher H/Cwa (1.47) and O/Cwa (0.41) ratios under straw return. The molecular transformation ability and inactive molecules of soil DOM under long-term straw return were reduced after chlorination, resulting in increased DOM instability. Chlorination led to a shift in the thermodynamic processes of soil DOM molecules from thermodynamically limited to thermodynamically favorable processes, and lignin-like compounds displayed higher potentials for transformation into protein/amino sugar-like compounds. C19H26O6 was identified as a sensitive formula for tracing chlorine reactivity under straw return, and a network illustrating the generation of DBPs from C19H26O6 was established. Overall, these results highlighted the strong chlorine reactivity of soil DOM under long-term straw return.

3.
Front Microbiol ; 15: 1391632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39056007

RESUMO

The application of straw-degrading microbes (SDMs) with straw returned to the field is an effective measure to improve soil quality, increase yield, and maintain soil microorganisms. However, the utilization of SDMs in winter in north China is limited by the poor effects at low temperatures. This study investigated the effects of a new compound SDM, including a novel low-temperature fungus Pseudogymnoascus sp. SDF-LT, on winter wheat yield, soil improvement, and soil microbial diversity. A 2-year field experiment was conducted in two different soil textures of wheat-maize rotation fields with full corn straw return and application of SDMs at an amount of 67.5 kg hm-2. After 2 years of continuous application of SDMs, the winter wheat yield increased significantly, reaching 9419.40 kg hm-2 in Ningjin (NJSDM) and 9107.25 kg hm-2 in Mancheng (MCSDM). The soil properties have been significantly improved compared with the single straw return group, especially the sandy loam soil, whose quality is relatively low. The analysis of soil microbial diversity showed that SDMs significantly reduced the Chao1, Shannon, Simpson, and observed species of the sandy loam soil in the MCSDM group. The Simpson and Shannon indexes of fungi diversity in the two experimental sites were significantly increased by SDMs. The negative correlation of fungi increased from 47.1 to 48.85% in the SDM groups. The soil-dominant microbes changed in the SDM groups, in which the interactions between microbes were enhanced. These results suggested that the SDMs changed the the soil microbial community structure and its diversity and complexity, which is beneficial for crop growth. Our study provided sufficient evidence for the utilization of low-temperature SDMs with straw return in cold winter, which plays a role in soil improvement, especially for low-quality soils, to increase crop yield.

4.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999577

RESUMO

Fungi as heterotrophs are key participants in the decomposition of organic materials and the transformation of nutrients in agroecosystems. Ditch-buried straw return as a novel conservation management strategy can improve soil fertility and alter hydrothermal processes. However, how ditch-buried straw return strategies affect the soil fungal community is still unclear. Herein, a 7-year field trial was conducted to test the influences of burial depth (0, 10, 20, 30, and 40 cm) and the amount of ditch-buried straw (half, full, double) on the diversity, composition, and predicted functions of a soil fungal community, as well as the activities of carbon-degraded enzymes. Under the full amount of straw burial, the abundance of phylum Ascomycota was 7.5% higher as compared to other burial amount treatments. This further increased the activity of cellobiohydrolase by 32%, as revealed by the positive correlation between Ascomycota and cellobiohydrolase. With deeper straw burial, however, the abundance of Ascomycota and ß-D-glucopyranoside activity decreased. Moreover, genus Alternaria and Fusarium increased while Mortierella decreased with straw burial amount and depth. FUNgild prediction showed that plant fungal pathogens were 1- to 2-fold higher, whilst arbuscular mycorrhizal fungi were 64% lower under straw buried with double the amount and at a depth of 40 cm. Collectively, these findings suggest that ditch-buried straw return with a full amount and buried at a depth less than 30 cm could improve soil nutrient cycles and health and may be beneficial to subsequent crop production.

5.
Sci Total Environ ; 941: 173737, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844214

RESUMO

Bacterial communities in soil and rhizosphere maintain a large collection of antibiotic resistance genes (ARGs). However, few of these ARGs and antibiotic resistant bacteria (ARB) are well-characterized under traditional farming practices. Here we compared the ARG profiles of maize rhizosphere and their bulk soils using metagenomic analysis to identify the ARG dissemination and explored the potential impact of chemical fertilization on ARB. Results showed a relatively lower abundance but higher diversity of ARGs under fertilization than straw-return. Moreover, the abundance and diversity of MGEs were significantly promoted by chemical fertilizer inputs in the rhizosphere compared to bulk soil. Machine learning and bipartite networks identified three bacterial genera (Pseudomonas, Bacillus and Streptomyces) as biomarkers for ARG accumulation. Thus we cultured 509 isolates belonging to these three genera from the rhizosphere and tested their antimicrobial susceptibility, and found that multi-resistance was frequently observed among Pseudomonas isolates. Assembly-based tracking explained that ARGs and four class I integrons (LR134330, LS998783, CP065848, LT883143) were co-occurred among contigs from Pseudomonas sp. Chemical fertilizers may shape the resistomes of maize rhizosphere, highlighting that rhizosphere carried multidrug-resistant Pseudomonas isolates, which may pose a risk to animal and human health. This study adds knowledge of long-term chemical fertilization on ARG dissemination in farmland systems and provides information for decision-making in agricultural production and monitoring.


Assuntos
Agricultura , Fertilizantes , Rizosfera , Microbiologia do Solo , Zea mays , Zea mays/microbiologia , Agricultura/métodos , Bactérias , Resistência Microbiana a Medicamentos/genética , Solo/química , Genes Bacterianos
6.
Sci Total Environ ; 945: 173930, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879027

RESUMO

Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.


Assuntos
Agricultura , Biodegradação Ambiental , Microplásticos , Poluentes do Solo , Solo , Microplásticos/análise , Solo/química , Poluentes do Solo/análise , Agricultura/métodos , Microbiologia do Solo , Poliésteres , Oryza
7.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794428

RESUMO

Leguminous green manure (LGM) has a reputation for improving crop productivity. However, little is known about the beneficial interactions with straw on crop yield and nutrient (N, P, K) use efficiency. Herein, a 9-year field experiment (from 2015 to 2023) containing three treatments-(1) chemical fertilizer as the control (CK), (2) NPK + straw return (Straw) and (3) NPK + straw return with LGM (Straw + LGM)-was conducted to investigate whether the combined application of LGM and straw can increase productivity and nutrient use efficiency in the wheat-maize-sunflower diversified cropping rotation. The results showed that in the third rotation (2021-2023), Straw + LGM significantly increased wheat yield by 10.2% and maize yield by 19.9% compared to CK. The total equivalent yield under Straw + LGM was the highest (26.09 Mg ha-1), exceeding Straw and CK treatments by 2.7% and 12.3%, respectively. For each 2 Mg ha-1 increase in straw returned to the field, sunflower yield increased by 0.2 Mg ha-1, whereas for each 1 Mg ha-1 increase in LGM yield from the previous crop, sunflower yield increased by 0.45 Mg ha-1. Compared to CK, the co-application of LGM and straw increased the N use efficiency of maize in the first and third rotation cycle by 70.6% and 55.8%, respectively, and the P use efficiency by 147.8% in the third rotation cycle. Moreover, Straw treatment led to an increase of net income from wheat and sunflower by 14.5% and 44.6%, while Straw + LGM increased the net income from maize by 15.8% in the third rotation cycle. Combining leguminous green manure with a diversified cropping rotation has greater potential to improve nutrient use efficiency, crop productivity and net income, which can be recommended as a sustainable agronomic practice in the Hetao District, Northwest China.

8.
Ecotoxicol Environ Saf ; 278: 116406, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728941

RESUMO

Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.


Assuntos
Cádmio , Desnitrificação , Nitrificação , Microbiologia do Solo , Poluentes do Solo , Triticum , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Ciclo do Nitrogênio
9.
Environ Sci Pollut Res Int ; 31(21): 30959-30971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619769

RESUMO

Soil amendment is an important strategy for improving soil quality and crop yield. From 2014 to 2019, we conducted a study to investigate the effects of tobacco straw return with lime on soil nutrients, soil microbial community structure, tobacco leaf yield, and quality in southern Anhui, China. A field experiment was conducted with four treatments: straw removed (CK), straw return (St), straw return with dolomite (St + D), and straw return with lime (St + L). Results showed that after 5 years of application, the St + L significantly increased the soil pH by 16.9%, and the contents of soil alkaline nitrogen (N) and available potassium (K) by 17.2% and 23.0%, respectively, compared with the CK. Moreover, the St + L significantly increased tobacco leaf yield (24.0%) and the appearance (9.1%) and sensory (5.9%) quality of flue-cured tobacco leaves. The addition of soil conditioners (straw, dolomite, and lime) increased both the total reads and effective sequences of soil microorganisms. Bacterial diversity was more sensitive to changes in the external environment compared to soil fungi. The application of soil amendments (lime and straw) promoted the growth of beneficial microorganisms in the soil. Additionally, bacterial species had greater competition and limited availability of resources for survival compared to fungi. The results showed that soil microorganisms were significantly influenced by the presence of AK, AN, and pH contents. These findings can provide an effective method for improving the quality of flue-cured tobacco leaves and guiding the amelioration of acidic soil in regions where tobacco-rice rotation is practiced.


Assuntos
Compostos de Cálcio , Nicotiana , Óxidos , Folhas de Planta , Microbiologia do Solo , Solo , Solo/química , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Microbiota/efeitos dos fármacos , Agricultura/métodos , China
10.
Sci Rep ; 14(1): 6424, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494507

RESUMO

Straw is an important source of organic fertilizer for soil enrichment, however, the effects of different nitrogen(N) application rates and depths on straw decomposition microorganisms and carbon and nitrogen cycling under full straw return conditions in cool regions of Northeast China are not clear at this stage. In this paper, we applied macro-genome sequencing technology to investigate the effects of different N application rates (110 kg hm-2, 120 kg hm-2, 130 kg hm-2, 140 kg hm-2, 150 kg hm-2) and depths (0-15 cm, 15-30 cm) on straw decomposing microorganisms and N cycling in paddy fields in the cool zone of Northeast China. The results showed that (1) about 150 functional genes are involved in the carbon cycle process of degradation during the degradation of returned straw, of which the largest number of functional genes are involved in the methane production pathway, about 42, the highest abundance of functional genes involved in the citric acid cycle pathway. There are 22 kinds of functional genes involved in the nitrogen cycle degradation process, among which there are more kinds involved in nitrogen fixation, with 4 kinds. (2) High nitrogen application (150 kg hm-2) inhibited the carbon and nitrogen conversion processes, and the abundance of straw-degrading microorganisms and nitrogen-cycling functional genes was relatively high at a nitrogen application rate of 130 kg hm-2. (3) Depth-dependent heterogeneity of the microbial community was reduced throughout the vertical space. At 71 days of straw return, the nitrogen cycling function decreased and some carbon functional genes showed an increasing trend with the increase of straw return depth. The nitrogen cycle function decreased with the increase of straw returning depth. The microbial community structure was best and the abundance of functional genes involved in the nitrogen cycling process was higher under the conditions of 0-15 cm of returning depth and 130 kg hm-2 of nitrogen application.


Assuntos
Agricultura , Oryza , Agricultura/métodos , Nitrogênio/análise , Carbono/análise , Solo/química , Ciclo do Nitrogênio , Fertilizantes , China
11.
Huan Jing Ke Xue ; 45(3): 1702-1712, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471882

RESUMO

Straw return and tillage depth treatments are one of the most important agricultural management measures that affect farmland soil respiration, but the mechanism of their interaction affecting farmland soil respiration remains unclear. Therefore, 116 published research articles were used through Meta-analysis technology for dryland farmland ecosystems in China to explore the effects of straw return and tillage depth treatments and their interaction on farmland soil respiration and its regulatory factors, which will provide important data support and a theoretical basis for achieving "carbon neutrality" in farmland ecosystems. The results showed that no tillage reduced soil respiration by 8.3%, and the effects of shallow and deep tillage treatments on soil respiration were not significant, but the increase in soil respiration still showed a trend of deep tillage>shallow tillage>no tillage. However, both shallow and deep tillage had relatively small effects on soil respiration and soil organic carbon (SOC), whereas no tillage reduced soil respiration by 8.3% and increased SOC by 7.05%. Therefore, implementing no tillage measures is of great significance for soil carbon sequestration and emission reduction in farmland ecosystems. In addition, tillage depth significantly regulated the impact of straw return on soil respiration, and the increase in soil respiration showed a trend of deep tillage straw return>shallow tillage straw return>no tillage straw return, with an overall average increase of 14.51%. The increase in soil respiration under different tillage depth treatments after straw return was closely related to the change in soil bulk density, crop yield, SOC, soil temperature, and moisture, and the contribution to the increase in soil respiration showed a trend of soil bulk density>crop yield>soil organic carbon>soil moisture>soil temperature. However, SOC increased by 29.32%, 10.12%, and 23.94%, respectively, in the deep tillage straw return, shallow tillage straw return, and no tillage straw return treatments, whereas soil respiration increased by 29.32% and 18.92%, respectively, in the deep tillage straw return and shallow tillage straw return treatments, and it only increased by 1.2% in the no tillage straw return treatment. Therefore, no tillage straw return was also beneficial to soil carbon sequestration and emission reduction in farmland ecosystems. Thus, in the dryland farmland ecosystem of China, tillage depth treatments regulated the impact of straw return on soil respiration, which was mainly related to soil physical and chemical properties, especially being closely related to soil bulk density. Moreover, no tillage and no tillage straw return are important agricultural management measures that are conducive to soil carbon sequestration and emission reduction.

12.
Chemosphere ; 352: 141372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311036

RESUMO

The mobility of arsenic (As) specie in agricultural soils is significantly impacted by the interaction between ferrihydrite (Fh) and dissolved organic material (DOM) from returning crop straw. However, additional research is necessary to provide molecular evidence for the interaction of toxic and mobile As (As(III)) specie and crop straw-based organo- Fh coprecipitates (OFCs). This study investigated the As(III) sorption behaviours of OFCs synthesized with maize or rape derived-DOM under various environmental conditions and the primary molecular sorption mechanisms using As K-edge X-ray absorption near edge structure (XANES) spectroscopy. According to our findings, pure Fh adsorbed more As(III) relative to the other two OFCs, and the presence of natural organic matter in the OFCs induced more As(III) adsorption at pH 5.0. Findings from this study indicated a maximum As(III) sorption on Ma (53.71 mg g⁻1) and Ra OFC (52.46 mg g⁻1) at pH 5.0, with a sharp decrease as the pH increased from 5.0 to 8.0. Additionally, As K-edge XANES spectroscopy indicated that ∼30% of adsorbed As(III) on the OFCs undergoes transformation to As(V) at pH 7-8. Functional groups from the DOM, such as O-H, COOH, and CO, contributed to As(III) desorption and its oxidation to As(V), whereas ionic strength analysis revealed inner complexation as the dominant As(III) sorption mechanism on the OFCs. Overall, the results indicate that the interaction of natural organic matter (NOM) with As(III) at higher pH promotes As(III) mobility, which is crucial when evaluating As migration and bioavailability in alkaline agricultural soils.


Assuntos
Arsênio , Arsênio/química , Zea mays , Compostos Férricos/química , Adsorção , Solo
13.
Front Plant Sci ; 15: 1336300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313806

RESUMO

Introduction: Straw return has been widely recognized as an important carbon (C) enhancement measure in agroecosystems, but the C-phosphorus (P) interactions and their effects on plants in saline soils are still unclear. Methods: In this study, we investigated the effects of straw return and three P application levels, no P fertilizer (Non-P), a conventional application rate of P fertilizer (CP), and a high application rate of P fertilizer (HP), on maize growth and soil C and P fractions through a pot experiment. Results and discussion: The results revealed that the dry matter weight of maize plant was no difference between the two straw return levels and was 15.36% higher under HP treatments than under Non-P treatments. Plant nutrient accumulations were enhanced by straw addition and increased with increasing P application rate. Straw application reduced the activities of peroxidase (POD), superoxide dismutase (SOD), catalase, and the content of malondialdehyde (MDA) in maize plants by 31.69%, 38.99%, 45.96% and 27.04%, respectively. P application decreased SOD, POD activities and MDA content in the absence of straw. The contents of easily oxidized organic carbon (EOC), particulate organic carbon (POC) and the ratio of POC/SOC in straw-added soils were 10.23%, 17.00% and 7.27% higher, respectively, than those in straw-absent soils. Compared with Non-P treatments, HP treatments led to an increase of 12.05%, 23.04% in EOC, POC contents respectively, while a decrease of 18.12% in the contribution of MAOC to the SOC pool. Straw return improved the P status of the saline soil by increasing soil available P (14.80%), organic P (35.91%) and Ca2-P contents (4.68%). The structural equation model showed that straw and P applications could promote maize growth (indicated by dry matter weight, P accumulation, antioxidant enzyme activity and MDA content) through improving soil C and P availabilities. Conclusion: This study provides evidence that straw return together with adequate P supply in saline soil can promote crop nutrient accumulation, attenuate the oxidation damage on crop growth, and be beneficial for SOC turnover and soil P activation.

14.
Front Plant Sci ; 15: 1273774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352646

RESUMO

Introduction: The panicle fertilization strategy for japonica and indica rice under wheat straw return (SR) has not been updated, especially on the elaboration of their impacts on spikelet differentiation and degeneration. This study aimed to verify the hypothesis that SR increases spikelet number by reducing spikelet degeneration and to explore the possibility of simplifying panicle fertilization. Methods: In three consecutive years, four varieties of japonica and indica rice were field-grown in Yangzhou, Jiangsu Province, China. Six panicle fertilization rates and split treatments were applied to SR and no straw return (NR) conditions. Results: The results showed that SR promoted rice yield significantly by 3.77%, and the highest yields were obtained under the T2 (split panicle fertilization at the panicle initiation (PI) and spikelet primordium differentiation (SPD) stages) and T1 (panicle fertilization only at the PI stage) treatments, for indica and japonica rice, respectively. Correlation and path analysis revealed that the number of spikelets per panicle was the most attributable to yield variation. SR significantly increased the concentration of alkali hydrolyzable N in the soil 40 days after rice transplantation, significantly increased the nitrogen accumulation per stem (NA) during the SPD-pollen mother cell meiosis (PMC) stage, and increased the brassinosteroids level in the young panicles at the PMC stage. SR also reduced the degeneration rate of spikelets (DRS) and increased the number of surviving spikelets (NSS). The dry matter accumulation per stem was more important to increasing the NA in japonica rice at the PMC stage, whereas NA was more affected by the N content than the dry matter accumulation in indica rice. In japonica rice, panicle N application once only at the PI stage combined with the N released from SR was enough to improve the plant N content, reduce the DRS, and increase the NSS. For indica rice, split application of N panicle fertilization at both the PI and SPD stages was still necessary to achieve a maximum NSS. Discussion: In conclusion, under wheat SR practice, panicle fertilization could be simplified to once in japonica rice with a significant yield increase, whereas equal splits might still be optimal for indica rice.

15.
J Environ Manage ; 353: 120084, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281421

RESUMO

Crop straw return is a widely used agricultural management practice. The addition of crop straw significantly alters the pool of dissolved organic matter (DOM) in agricultural soils and plays a pivotal role in the global carbon (C) cycle, which is sensitive to climate change. The DOM concentration and composition at different soil depths could regulate the turnover and further storage of organic C in terrestrial systems. However, it is still unclear how crop straw return influences the change in DOM composition in rice paddy soils. Therefore, a field experiment was conducted in which paddy soil was amended with crop straw for 10 years. Two crop straw-addition treatments [NPK with 50% crop straw (NPK+1/2S) and NPK with 100% crop straw (NPK + S)], a conventional mineral fertilization control (NPK) and a non-fertilized control were included. Topsoil (0-20 cm) and subsoil (20-40 cm) samples were collected to investigate the soil DOM concentration and compositional structure of the profile. Soil nutrients, iron (Fe) fraction, microbial biomass carbon (MBC), and concentration and optical properties (UV-Vis and fluorescence spectra) of soil DOM were determined. Here, we found that the DOM in the topsoil was more humified than that in the subsoil. The addition of crop straw further decreased the humidification degree of DOM in the subsoil. In crop straw-amended topsoil, microbial decomposition controlled the composition of DOM and induced the formation of aromatic DOM. In the straw-treated subsoil, selective adsorption by poorly crystalline Fe(oxyhydr)oxides and microbial decomposition controlled the composition of DOM. In particular, the formation of protein-like compounds could have played a significant role in the microbial degradation of DOM in the subsoil. Overall, this work conducted a case study within long-term agricultural management to understand the changes in DOM composition along the soil profile, which would be further helpful for evaluating C cycling in agricultural ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Oryza , Ecossistema , Solo/química , Agricultura , Carbono
16.
Plants (Basel) ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005765

RESUMO

Straw return (SR) plus nitrogen (N) fertilizer has become a practical field management mode to improve soil fertility and crop yield in North China. This study aims to explore the relationship among organic waste, mineral nutrient utilization, and crop yield under SRN mode. The fertilizer treatments included unfertilized (CK), SR (straws from wheat and corn), N fertilizer (N), and SR plus N fertilizer (SRN). SRN treatment not only significantly increased the grain yield, net photosynthetic rate, and transpiration rate but also enhanced the contents of chlorophyll, soluble sugar, and soluble protein and increased the activities of antioxidant enzymes but reduced intercellular CO2 concentration and malondialdehyde (MDA) content when compared to other treatments. There were 2572, 1258, and 3395 differentially expressed genes (DEGs) identified from the paired comparisons of SRvsCK, NvsCK, and SRNvsCK, respectively. The transcript levels of many promising genes involved in the transport and assimilation of potassium, phosphate, and nitrogen, as well as the metabolisms of sugar, lipid, and protein, were down-regulated by straw returning under N treatment. SRN treatment maintained the maximum maize grain yield by regulating a series of genes' expressions to reduce nutrient shortage stress and to enhance the photosynthesis of ear leaves at the maize grain filling stage. This study would deepen the understanding of complex molecular mechanisms among organic waste, mineral nutrient utilization, crop yield, and quality.

17.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2693-2702, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897276

RESUMO

Clarifying the effect of different maize straw returning methods on soil temperature is crucial for optimizing the management of farmland straw and the efficient utilization of heat resources in the black soil region of Northeast China. To investigate the impacts of straw returning methods on soil temperature, we conducted a field experiment with four treatments during 2018 and 2020, including plough tillage with straw returning (PTSR), rotary tillage with straw returning (RTSR), no-tillage with straw returning (NTSR), and a control treatment of conventional ridge tillage without straw returning (CT). We measured soil temperature and water content at the 5 cm, 15 cm and 30 cm soil layer, and the straw coverage rate during the 3-year maize growth period. We further analyzed the differences of soil temperature in different soil layer under different treatments, accumulated soil temperature and growing degree-days (GDD) above 10 ℃, daily dynamics of soil temperature, the production efficiency of air accumulated temperature among different treatments, and explored factors causing the difference of soil temperature and the production efficiency of air accumulated temperature. Our results showed that different treatments mainly affected soil temperature from the sowing to emergence stage (S-VE) of maize. The daily average soil temperature showed a trend of CT>PTSR>RTSR>NTSR. The differences of soil temperature under different treatments showed a decreasing trend as growth process advanced and soil depth increased. Compared with the CT treatment, soil temperature at 5 cm depth was decreased by 0.86, 1.84 and 3.50 ℃ for PTSR, RTSR, and NTSR treatments, respectively. NTSR significantly reduced the accumulated temperature of ≥10 ℃ in different soil layers and GDD. The accumulated temperature ≥ 10 ℃ at the 5, 15, and 30 cm soil layers decreased by 216.2, 222.7, and 165.1 ℃·d, and the GDD decreased by 201.9, 138.7 and 123.9 ℃·d, respectively. In addition, production efficiency of air accumulated temperature decreased by 9.7% to 15.6% for NTSR. Conclusively, PTSR and RTSR had significant impacts on topsoil temperature during the maize growing period from sowing to emergence, but did not affect the accumulated soil temperature and the production efficiency of air accumulated temperature. However, NTSR significantly reduced topsoil temperature and production efficiency of air accumulated temperature.


Assuntos
Agricultura , Solo , Agricultura/métodos , Zea mays , Temperatura , Triticum , China
18.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836126

RESUMO

A long-term field experiment has been ongoing since 1999 at the Experimental Station of Vytautas Magnus University's Agriculture Academy. According to the latest edition of the International Soil Classification System, the soil in the experimental field can be classified as Planosol, with a silty medium-loam texture at a depth of 0-20 cm and a silty light-loam texture at a depth of 20-40 cm. Studies were carried out on winter wheat crops in 2014, 2017, and 2023. This research aimed to assess how different long-term tillage systems impact soil shear strength and aggregate stability, their interconnection, and the effect of crop residues on soil stability. The treatments were arranged using a split-plot design. In a two-factor field experiment, straw was removed from one part of the experimental field, while the entire straw yield was chopped and spread at harvest in the other part (Factor A). The subplot factor (Factor B) included three different tillage systems: conventional deep ploughing, cover cropping for green manure with no tillage, and no tillage. The soil samples were analyzed at the Laboratory of Agrobiology at Vytautas Magnus University's Agriculture Academy. The findings indicated that the long-term application of reduced tillage significantly increased the soil shear strength. Shallower tillage depths led to a higher soil shear strength, while the effect of spreading plant residues was relatively lower. The long-term tillage of different intensities, spreading plant residues, and catch crop cultivation for green manure did not significantly affect the soil structure. However, the soil structural stability was found to be highly dependent on soil tillage. Cover cropping for green manure with no tillage and no tillage alone positively affected the soil aggregate stability in the upper 0-10 cm and 10-25 cm layers. The correlation-regression analysis showed that, in the top 0-10 cm and 10-25 soil layers, there were moderate to strong correlations between the soil structural stability, soil shear strength, and the effect of crop residues on soil stability.

19.
Chemosphere ; 344: 140390, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820877

RESUMO

Crop residues perform an essential role in the material cycling and energy exchange processes and are commonly used as an organic soil amendment and potassium (K) substitute to enhance field productivity in rice-upland rotation systems. Elucidating the effects of continuous K fertilization combined with straw return on the fate of soil K is of great significance to the scientific application of K fertilization and the sustainable development of the ecological environment. A short-(5 years) and a long-term (38 years) field experiments at the Wuxue (WX) and Wangcheng (WC) sites respectively were conducted to study the effects of continuous K fertilization combined with straw return on soil potassium (K) fertility and loss. Results showed that K fertilization and straw return improved soil K supply capacity significantly. K fertilization (NPK) and straw return (NPK + ST) at WX and WC sites significantly increased soil exchangeable K content (KE) by 27.7%-102.1% and 36.6%-100.0%, respectively, compared with that of the treatment without K (NP). K release kinetics showed that most K+ was released in soil of the NPK+ST treatment, indicating a stronger soil K+ supplying capacity. Long-term K deficit resulted in the conversion of illite to interlayer minerals and kaolinite, which were not detected at the short-term experiment site. Integrated K fertilizer and straw return reduced soil bulk density (BD) and degree of anisotropy (DA), increased fractal dimension (FD) and optimized soil pore structure distribution. Nonetheless, continuous sufficient K input raised the amount of total K loss through runoff and leaching. Compared with that of NP treatment, the total K loss of NPK and NPK + ST treatments were increased by 160.3% and 227.5%, respectively. This strategy contributed to the conversion of bio-waste into resources, sustainable soil K management and scientific K fertilizer application for agricultural production.


Assuntos
Oryza , Solo , Solo/química , Potássio/química , Fertilizantes , Agricultura/métodos , Fertilização , Nitrogênio
20.
J Environ Manage ; 347: 119045, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778069

RESUMO

In order to explore the alteration of N transformation and N2O emissions in acid soil with the co-application of straw and different types of nitrogen (N) fertilizers, an incubation experiment was carried out for 40 days. There are totally five treatments in the study: (a) without straw and N fertilizer (N0), (b) straw alone application (SN0), (c) straw with NH4Cl (SN1), (d) straw with NaNO3 (SN2), and (e) straw with NH4NO3 (SN3). N2O emissions, soil physicochemical properties, and abundance/activity of ammonia-oxidizing archaea (AOA) were measured. The results showed that the combined application of straw and N enhanced N2O emissions, particularly, SN2 and SN3 treatments. Moreover, the soil pH was lower in co-application treatments and the average decreasing rate was 9.69%. Specially, the pH was lowest in the SN1 treatment. The results of correlation analysis indicated a markedly negative relationship between pH and N2O, as well as a negative relationship between pH and net mineralization rate. These findings suggest that pH alteration can affect the N transformation process in soil and thus influence N2O emissions. In addition, the dominant AOA at the genus level in the SN2 treatment was Nitrosopumilus, and Candidatus nitrosocosmicus in the SN3 treatment. The reshaped AOA structure can serve as additional evidence of the changes in the N transformation process. In conclusion, as the return of straw, the cumulation of N2O from arable acid soil depends on the form of N fertilizer. It is also important to consider how N fertilizer is applied to reduce the possibility of N being lost in the soil as gas.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Archaea , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA