Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Vaccine ; 41(40): 5841-5847, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37596198

RESUMO

The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal region of the M protein is variable in sequence, defines the M/emm type, and contains epitopes that elicit opsonic antibodies that protect animals from challenge infections. Although there are >200 M types of Strep A, there is now evidence that structurally related M proteins can be grouped into clusters and that immunity may be cluster-specific in addition to M type-specific. This observation has led to recent studies of structure-based design of multivalent M peptide vaccines to select peptides predicted to cross-react with heterologous M types to improve vaccine coverage. In the current study, we have applied a refined series of peptide structural algorithms to predict immunological cross-reactivity among 117 N-terminal M peptides representing the most prevalent M types of Strep A. Based on the results of the structural analyses, in combination with global M type prevalence data, we constructed a 32-valent vaccine containing 19 cross-reactive vaccine candidates predicted to cross-react with 37 heterologous M peptides to which were added 13 type-specific M peptides. The 4-protein recombinant vaccine was immunogenic in rabbits and elicited significant levels of antibodies against 31/32 (97%) vaccine peptides and 28/37 (76%) peptides predicted to cross-react. The vaccine antisera also promoted opsonophagocytic killing of vaccine and cross-reactive M types of Strep A. Based on a recent analysis of M type prevalence of Strep A, the potential global coverage of the 32-valent vaccine is âˆ¼90%, ranging from 68% in Africa to 95% in North America. Our results indicate the utility of structure-based design that may be applied to future studies of broadly protective M peptide vaccines.


Assuntos
Vacinas Estreptocócicas , Streptococcus pyogenes , Animais , Coelhos , Vacinas Combinadas , África , Algoritmos , Anticorpos
2.
Vaccine ; 39(12): 1773-1779, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33642159

RESUMO

The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal sequence of the protein defines the more than 200 M types of Strep A and also contains epitopes that elicit opsonic antibodies, some of which cross-react with heterologous M types. Current efforts to develop broadly protective M protein-based vaccines are directed at identifying potential cross-protective epitopes located in the N-terminal regions of cluster-related M proteins for use as vaccine antigens. In this study, we have used a comprehensive approach using the recurrent neural network ABCpred and IEDB epitope conservancy analysis tools to predict 16 residue linear B-cell epitopes from 117 clinically relevant M types of Strep A (~88% of global Strep A infections). To examine the immunogenicity of these epitope-based vaccines, nine peptides that together shared ≥60% sequence identity with 37 heterologous M proteins were incorporated into two recombinant hybrid protein vaccines, in which the epitopes were repeated 2 or 3 times, respectively. The combined immune responses of immunized rabbits showed that the vaccines elicited significant levels of antibodies against all nine vaccine epitopes present in homologous N-terminal 1-50 amino acid synthetic M peptides, as well as cross-reactive antibodies against 16 of 37 heterologous M peptides predicted to contain similar epitopes. The epitope-specificity of the cross-reactive antibodies was confirmed by ELISA inhibition assays and functional opsonic activity was assayed in HL-60-based bactericidal assays. The results provide important information for the future design of broadly protective M protein-based Strep A vaccines.


Assuntos
Antígenos de Bactérias , Vacinas Estreptocócicas , Animais , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Proteínas de Transporte , Epitopos , Redes Neurais de Computação , Coelhos , Streptococcus pyogenes
3.
J Biol Chem ; 295(12): 3826-3836, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029479

RESUMO

Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/imunologia , Streptococcus pyogenes/metabolismo , Vacinas Sintéticas/imunologia , Algoritmos , Sequência de Aminoácidos , Animais , Reações Antígeno-Anticorpo , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Análise por Conglomerados , Reações Cruzadas , Epitopos/imunologia , Peptídeos/química , Conformação Proteica em alfa-Hélice , Coelhos , Streptococcus pyogenes/imunologia
4.
Front Immunol ; 10: 1230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214187

RESUMO

Streptococcus pyogenes infects over 700 million people worldwide annually. Immune evasion strategies employed by the bacteria include binding of the complement inhibitors, C4b-binding protein (C4BP) and Factor H in a human-specific manner. We recently showed that human IgG increased C4BP binding to the bacterial surface, which promoted streptococcal immune evasion and increased mortality in mice. We sought to identify how IgG promotes C4BP binding to Protein H, a member of the M protein family. Dimerization of Protein H is pivotal for enhanced binding to human C4BP. First, we illustrated that Protein H, IgG, and C4BP formed a tripartite complex. Second, surface plasmon resonance revealed that Protein H binds IgG solely through Fc, but not Fab domains, and with high affinity (IgG-Protein H: KD = 0.4 nM; IgG-Fc-Protein H: KD ≤ 1.6 nM). Each IgG binds two Protein H molecules, while up to six molecules of Protein H bind one C4BP molecule. Third, interrupting Protein H dimerization either by raising temperature to 41°C or with a synthetic peptide prevented IgG-Protein H interactions. IgG-Fc fragments or monoclonal human IgG permitted maximal C4BP binding when used at concentrations from 0.1 to 10 mg/ml. In contrast, pooled human IgG enhanced C4BP binding at concentrations up to 1 mg/ml; decreased C4BP binding at 10 mg/ml occurred probably because of Fab-streptococcal interactions at these high IgG concentrations. Taken together, our data show how S. pyogenes exploits human IgG to evade complement and enhance its virulence. Elucidation of this mechanism could aid design of new therapeutics against S. pyogenes.


Assuntos
Proteína de Ligação ao Complemento C4b/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina G/imunologia , Imunomodulação , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Proteína de Ligação ao Complemento C4b/metabolismo , Fator H do Complemento/química , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Humanos , Cinética , Ligantes , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Multimerização Proteica , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia
5.
J Biol Chem ; 293(47): 18365-18377, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301765

RESUMO

In order to proliferate and mount an infection, many bacterial pathogens need to acquire iron from their host. The most abundant iron source in the body is the oxygen transporter hemoglobin (Hb). Streptococcus pyogenes, a potentially lethal human pathogen, uses the Shr protein to capture Hb on the cell surface. Shr is an important virulence factor, yet the mechanism by which it captures Hb and acquires its heme is not well-understood. Here, we show using NMR and biochemical methods that Shr binds Hb using two related modules that were previously defined as domains of unknown function (DUF1533). These hemoglobin-interacting domains (HIDs), called HID1 and HID2, are autonomously folded and independently bind Hb. The 1.5 Å resolution crystal structure of HID2 revealed that it is a structurally unique Hb-binding domain. Mutagenesis studies revealed a conserved tyrosine in both HIDs that is essential for Hb binding. Our biochemical studies indicate that HID2 binds Hb with higher affinity than HID1 and that the Hb tetramer is engaged by two Shr receptors. NMR studies reveal the presence of a third autonomously folded domain between HID2 and a heme-binding NEAT1 domain, suggesting that this linker domain may position NEAT1 near Hb for heme capture.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hemoglobinas/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/genética , Heme/metabolismo , Hemoglobinas/química , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Domínios Proteicos , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
6.
J Biol Chem ; 293(41): 16006-16018, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30150299

RESUMO

Group A Streptococcus (GAS) is a human-specific pathogen responsible for a wide range of diseases, ranging from superficial to life-threatening invasive infections, including endometritis, and autoimmune sequelae. GAS strains express a vast repertoire of virulence factors that varies depending on the strain genotype, and many adhesin proteins that enable GAS to adhere to host cells are restricted to some genotypes. GAS emm28 is the third most prevalent genotype in invasive infections in France and is associated with gyneco-obstetrical infections. emm28 strains harbor R28, a cell wall-anchored surface protein that has previously been reported to promote adhesion to cervical epithelial cells. Here, using cellular and biochemical approaches, we sought to determine whether R28 supports adhesion also to other cells and to characterize its cognate receptor. We show that through its N-terminal domain, R28Nt, R28 promotes bacterial adhesion to both endometrial-epithelial and endometrial-stromal cells. R28Nt was further subdivided into two domains, and we found that both are involved in cell binding. R28Nt and both subdomains interacted directly with the laminin-binding α3ß1, α6ß1, and α6ß4 integrins; interestingly, these bindings events did not require divalent cations. R28 is the first GAS adhesin reported to bind directly to integrins that are expressed in most epithelial cells. Finally, R28Nt also promoted binding to keratinocytes and pulmonary epithelial cells, suggesting that it may be involved in supporting the prevalence in invasive infections of the emm28 genotype.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Adesão Celular/fisiologia , Integrina alfa3beta1/metabolismo , Integrina alfa6beta1/metabolismo , Integrina alfa6beta4/metabolismo , Adesinas Bacterianas/química , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Queratinócitos/metabolismo , Ligação Proteica , Domínios Proteicos , Streptococcus pyogenes/química , Células Estromais/metabolismo
7.
J Biol Chem ; 293(35): 13578-13591, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30002122

RESUMO

Some strains of the bacterial pathogen Streptococcus pyogenes secrete protein SIC (streptococcal inhibitor of complement), including strains of the clinically relevant M1 serotype. SIC neutralizes the effect of a number of antimicrobial proteins/peptides and interferes with the function of the host complement system. Previous studies have shown that some S. pyogenes proteins bind and modulate coagulation and fibrinolysis factors, raising the possibility that SIC also may interfere with the activity of these factors. Here we show that SIC interacts with both human thrombin and plasminogen, key components of coagulation and fibrinolysis. We found that during clot formation, SIC binds fibrin through its central region and that SIC inhibits fibrinolysis by interacting with plasminogen. Flow cytometry results indicated that SIC and plasminogen bind simultaneously to S. pyogenes bacteria, and fluorescence microscopy revealed co-localization of the two proteins at the bacterial surface. As a consequence, SIC-expressing bacteria entrapped in clots inhibit fibrinolysis, leading to delayed bacterial escape from the clots as compared with mutant bacteria lacking SIC. Moreover, within the clots SIC-expressing bacteria were protected against killing. In an animal model of subcutaneous infection, SIC-expressing bacteria exhibited a delayed systemic spread. These results demonstrate that the bacterial protein SIC interferes with coagulation and fibrinolysis and thereby enhances bacterial survival, a finding that has significant implications for S. pyogenes virulence.


Assuntos
Proteínas de Bactérias/imunologia , Fibrinólise , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Trombose/imunologia , Animais , Proteínas do Sistema Complemento/imunologia , Feminino , Fibrina/imunologia , Fibrinogênio/imunologia , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/microbiologia , Trombina/imunologia , Trombose/complicações , Trombose/microbiologia
8.
J Biol Chem ; 293(20): 7796-7810, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29615492

RESUMO

Keratinized epidermis constitutes a powerful barrier of the mucosa and skin, effectively preventing bacterial invasion, unless it is wounded and no longer protective. Wound healing involves deposition of distinct extracellular matrix (ECM) proteins enriched in cellular fibronectin (cFn) isoforms containing extra domain A (EDA). The streptococcal collagen-like protein 1 (Scl1) is a surface adhesin of group A Streptococcus (GAS), which contains an N-terminal variable (V) domain and a C-terminally located collagen-like domain. During wound infection, Scl1 selectively binds EDA/cFn isoforms and laminin, as well as low-density lipoprotein (LDL), through its V domain. The trimeric V domain has a six-helical bundle fold composed of three pairs of anti-parallel α-helices interconnected by hypervariable loops, but the roles of these structures in EDA/cFn binding are unclear. Here, using recombinant Scl (rScl) constructs to investigate structure-function determinants of the Scl1-EDA/cFn interaction, we found that full-length rScl1, containing both the globular V and the collagen domains, is necessary for EDA/cFn binding. We established that the surface-exposed loops, interconnecting conserved α-helices, guide recognition and binding of Scl1-V to EDA and binding to laminin and LDL. Moreover, electrostatic surface potential models of the Scl1-V domains pointed to a conserved, negatively charged pocket, surrounded by positively charged and neutral regions, as a determining factor for the binding. In light of these findings, we propose an updated model of EDA/cFn recognition by the Scl1 adhesin from GAS, representing a significant step in understanding the Scl1-ECM interactions within the wound microenvironment that underlie GAS pathogenesis.


Assuntos
Proteínas de Bactérias/química , Colágeno/química , Matriz Extracelular/química , Fibronectinas/química , Laminina/química , Lipoproteínas LDL/química , Streptococcus pyogenes/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Colágeno/genética , Colágeno/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Laminina/genética , Laminina/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Cicatrização/genética
9.
J Biol Chem ; 292(50): 20544-20557, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29030429

RESUMO

Rap/Rgg/NprR/PlcR/PrgX (RRNPP) quorum-sensing systems use extracellular peptide pheromones that are detected by cytoplasmic receptors to regulate gene expression in firmicute bacteria. Rgg-type receptors are allosterically regulated through direct pheromone binding to control transcriptional activity; however, the receptor activation mechanism remains poorly understood. Previous work has identified a disulfide bond between Cys-45 residues within the homodimer interface of Rgg2 from Streptococcus dysgalactiae (Rgg2Sd). Here, we compared two Rgg2Sd(C45S) X-ray crystal structures with that of wild-type Rgg2Sd and found that in the absence of the intermolecular disulfide, the Rgg2Sd dimer interface is destabilized and Rgg2Sd can adopt multiple conformations. One conformation closely resembled the "disulfide-locked" Rgg2Sd secondary and tertiary structures, but another displayed more extensive rigid-body shifts as well as dramatic secondary structure changes. In parallel experiments, a genetic screen was used to identify mutations in rgg2 of Streptococcus pyogenes (rgg2Sp ) that conferred pheromone-independent transcriptional activation of an Rgg2-stimulated promoter. Eight mutations yielding constitutive Rgg2 activity, designated Rgg2Sp*, were identified, and five of them clustered in or near an Rgg2 region that underwent conformational changes in one of the Rgg2Sd(C45S) crystal structures. The Rgg2Sp* mutations increased Rgg2Sp sensitivity to pheromone and pheromone variants while displaying decreased sensitivity to the Rgg2 antagonist cyclosporine A. We propose that Rgg2Sp* mutations invoke shifts in free-energy bias to favor the active state of the protein. Finally, we present evidence for an electrostatic interaction between an N-terminal Asp of the pheromone and Arg-153 within the proposed pheromone-binding pocket of Rgg2Sp.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/química , Modelos Moleculares , Mutação Puntual , Streptococcus pyogenes/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Ciclosporina/farmacologia , Dimerização , Farmacorresistência Bacteriana , Cinética , Mutagênese Sítio-Dirigida , Feromônios/química , Feromônios/metabolismo , Feromônios/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Streptococcus pyogenes/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Transativadores/química , Transativadores/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
J Biol Chem ; 292(47): 19441-19457, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29021255

RESUMO

In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Bactérias/metabolismo , Carboidratos/química , Fosfolipídeos/metabolismo , Ramnose/biossíntese , Streptococcus pyogenes/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Peptidoglicano/metabolismo , Streptococcus pyogenes/química
11.
J Biol Chem ; 292(10): 4244-4254, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28154192

RESUMO

Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise/imunologia , Complemento C1q/metabolismo , Endopeptidases/metabolismo , Infecções Pneumocócicas/imunologia , Dermatopatias/imunologia , Streptococcus pyogenes/metabolismo , Animais , Proteínas de Bactérias/imunologia , Adesão Celular , Células Cultivadas , Complemento C1q/imunologia , Endopeptidases/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/metabolismo , Dermatopatias/metabolismo , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
12.
J Biol Chem ; 290(52): 31126-37, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26527680

RESUMO

Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5'-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 µm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5'-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg(2+), Ca(2+), or Mn(2+). However, Zn(2+) inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5'-nucleotidase activity and immune evasion properties.


Assuntos
Atividade Bactericida do Sangue/imunologia , Evasão da Resposta Imune , N-Glicosil Hidrolases/imunologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Humanos , Lactococcus lactis/genética , Lactococcus lactis/imunologia , Macrófagos , Viabilidade Microbiana/genética , Viabilidade Microbiana/imunologia , N-Glicosil Hidrolases/genética , Streptococcus pyogenes/genética , Fatores de Virulência/genética
13.
J Biol Chem ; 289(52): 36315-24, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378408

RESUMO

Group A Streptococcus (GAS) responds to subinhibitory concentrations of LL-37 by up-regulation of virulence factors through the CsrRS (CovRS) two-component system. The signaling mechanism, however, is unclear. To determine whether LL-37 signaling reflects specific binding to CsrS or rather a nonspecific response to LL-37-mediated membrane damage, we tested LL-37 fragments for CsrRS signaling and for GAS antimicrobial activity. We identified a 10-residue fragment (RI-10) of LL-37 as the minimal peptide that retains the ability to signal increased expression of GAS virulence factors, yet it has no detectable antimicrobial activity against GAS. Substitution of individual key amino acids in RI-10 reduced or abrogated signaling. These data do not support the hypothesis that CsrS detects LL-37-induced damage to the bacterial cell membrane but rather suggest that LL-37 signaling is mediated by a direct interaction with CsrS. To test whether LL-37 binds to CsrS, we used the purified CsrS extracellular domain to pull down LL-37 in vitro, a result that provides further evidence that LL-37 binds to CsrS. The dissociation of CsrS-mediated signaling from membrane damage by LL-37 fragments together with in vitro evidence for a direct LL-37-CsrS binding interaction constitute compelling evidence that signal transduction by LL-37 through CsrS reflects a direct ligand/receptor interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Catelicidinas/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Streptococcus pyogenes/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ligação Proteica , Streptococcus pyogenes/enzimologia , Ativação Transcricional , Regulação para Cima , Fatores de Virulência/biossíntese
14.
J Biol Chem ; 289(46): 32303-32315, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266727

RESUMO

A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.


Assuntos
Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Membrana Celular/microbiologia , Biologia Computacional , Exotoxinas/metabolismo , Feminino , Teste de Complementação Genética , Histidina Quinase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Neutrófilos/microbiologia , Mutação Puntual , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Virulência
15.
J Biol Chem ; 289(39): 26914-26921, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122767

RESUMO

Group A Streptococcus (GAS) commonly infects human skin and occasionally causes severe and life-threatening invasive diseases. The hyaluronan (HA) capsule of GAS has been proposed to protect GAS from host defense by mimicking endogenous HA, a large and abundant glycosaminoglycan in the skin. However, HA is degraded during tissue injury, and the functions of short-chain HA that is generated during infection have not been studied. To examine the impact of the molecular mass of HA on GAS infection, we established infection models in vitro and in vivo in which the size of HA was defined by enzymatic digestion or custom synthesis. We discovered that conversion of high molecular mass HA to low molecular mass HA facilitated GAS phagocytosis by macrophages and limited the severity of infection in mice. In contrast, native high molecular mass HA significantly impaired internalization by macrophages and increased GAS survival in murine blood. Thus, our data demonstrate that GAS virulence can be influenced by the size of HA derived from both the bacterium and host and suggest that high molecular mass HA facilitates GAS deep tissue infections, whereas the generation of short-chain HA can be protective.


Assuntos
Cápsulas Bacterianas/imunologia , Ácido Hialurônico/imunologia , Macrófagos/imunologia , Fagocitose , Dermatopatias Bacterianas/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Linhagem Celular , Humanos , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Dermatopatias Bacterianas/patologia , Infecções Estreptocócicas/patologia
16.
J Biol Chem ; 289(32): 22427-36, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958729

RESUMO

Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feromônios/genética , Feromônios/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Transativadores/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Variação Genética , Humanos , Feromônios/química , Ligação Proteica , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Streptococcus pyogenes/patogenicidade
17.
J Biol Chem ; 289(26): 18175-88, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24825900

RESUMO

Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Cristalografia por Raios X , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA