Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2408634, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148167

RESUMO

Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.

2.
Bioact Mater ; 39: 287-301, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38827170

RESUMO

Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.

3.
Small ; 20(28): e2311388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282377

RESUMO

Although DNA probes have attracted increasing interest for precise tumor cell identification by imaging intracellular biomarkers, the requirement of commercial transfection reagents, limited targeting ligands, and/or non-biocompatible inorganic nanostructures has hampered the clinic translation. To circumvent these shortcomings, a reconfigurable ES-NC (Na+-dependent DNAzyme (E)-based substrate (S) cleavage core/shell DNA nanocluster (NC)) entirely from DNA strands is assembled for precise imaging of cancerous cells in a successive dual-stimuli-responsive manner. This nanoprobe is composed of a strung DNA tetrahedral satellites-based protective (DTP) shell, parallelly aligned target-responsive sensing (PTS) interlayer, and hydrophobic cholesterol-packed innermost layer (HCI core). Tetrahedral axial rotation-activated reconfiguration of DTP shell promotes the exposure of interior hydrophobic moieties, enabling cholesterol-mediated cellular internalization without auxiliary elements. Within cells, over-expressed glutathione triggers the disassembly of the DTP protective shell (first stimulus), facilitating target-stimulated signal transduction/amplification process (second stimuli). Target miRNA-21 is detected down to 10.6 fM without interference from coexisting miRNAs. Compared with transfection reagent-mediated counterpart, ES-NC displays a higher imaging ability, resists nuclease degradation, and has no detectable damage to healthy cells. The blind test demonstrates that the ES-NC is suitable for the identification of cancerous cells from healthy cells, indicating a promising tool for early diagnosis and prediction of cancer.


Assuntos
DNA , Humanos , DNA/química , DNA/metabolismo , DNA Catalítico/metabolismo , DNA Catalítico/química , Imagem Óptica/métodos , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Nanoestruturas/química , Neoplasias/metabolismo , Colesterol/química , Nanopartículas/química
4.
Natl Sci Rev ; 10(11): nwad239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37854949

RESUMO

Thermal annealing has been proven to be an efficient method to optimize the device performance of organic and polymeric opto-electronic materials. However, no detailed information of aggregate structures was obtained for a deeper understanding of what happens during thermal annealing. Herein, through modulation of molecular configurations by tunable linkage positions, and the amplified amplitudes of molecular motions by incorporation of additional methylene units, accurate changes of aggregated structures upon thermal annealing have been achieved, accompanying with the 'turn-on' room temperature phosphorescence (RTP) response by about 4800- and 177-fold increase of lifetimes. The stretching and swing motion models have been proposed, which afforded an efficient way to investigate the science of dynamic aggregation in depth.

5.
Micromachines (Basel) ; 10(8)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370137

RESUMO

The electromagnetic (EM) properties of metasurfaces depend on both structural design and material properties. microelectromechanical systems (MEMS) technology offers an approach for tuning metasurface EM properties by structural reconfiguration. In the past 10 years, vast applications have been demonstrated based on MEMS metasurfaces, which proved to have merits including, large tunability, fast speed, small size, light weight, capability of dense integration, and compatibility of cost-effective fabrication process. Here, recent advances in MEMS metasurface applications are reviewed and categorized based on the tuning mechanisms, operation band and tuning speed. As an example, the pros and cons of MEMS metasurfaces for tunable lens applications are discussed and compared with traditional tunable lens technologies followed by the summary and outlook.

6.
Angew Chem Int Ed Engl ; 54(12): 3592-7, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25630797

RESUMO

Today, DNA nanotechnology is one of the methods of choice to achieve spatiotemporal control of matter at the nanoscale. By combining the peculiar spatial addressability of DNA origami structures with the switchable mechanical movement of small DNA motifs, we constructed reconfigurable DNA nanochambers as dynamic compartmentalization systems. The reversible extension and contraction of the inner cavity of the structures was used to control the distance-dependent energy transfer between two preloaded fluorophores. Interestingly, single-molecule FRET studies revealed that the kinetics of the process are strongly affected by the choice of the switchable motifs and/or actuator sequences, thus offering a valid method for fine-tuning the dynamic properties of large DNA nanostructures. We envisage that the proposed DNA nanochambers may function as model structures for artificial biomimetic compartments and transport systems.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Nanoestruturas/química , Materiais Biomiméticos/química , Microscopia de Força Atômica , Estreptavidina/química
7.
Angew Chem Int Ed Engl ; 53(29): 7475-9, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24899518

RESUMO

Nucleic acids have been used to create diverse synthetic structural and dynamic systems. Toehold-mediated strand displacement has enabled the construction of sophisticated circuits, motors, and molecular computers. Yet it remains challenging to demonstrate complex structural reconfiguration in which a structure changes from a starting shape to another arbitrarily prescribed shape. To address this challenge, we have developed a general structural-reconfiguration method that utilizes the modularly interconnected architecture of single-stranded DNA tile and brick structures. The removal of one component strand reveals a newly exposed toehold on a neighboring strand, thus enabling us to remove regions of connected component strands without the need to modify the strands with predesigned external toeholds. By using this method, we reconfigured a two-dimensional rectangular DNA canvas into diverse prescribed shapes. We also used this method to reconfigure a three-dimensional DNA cuboid.


Assuntos
DNA/química , Nanoestruturas , Conformação de Ácido Nucleico , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA